Matches in SemOpenAlex for { <https://semopenalex.org/work/W1639175092> ?p ?o ?g. }
- W1639175092 abstract "Consider a $Ntimes n$ matrix $Sigma_n=frac{1}{sqrt{n}}R_n^{1/2}X_n$, where $R_n$ is a nonnegative definite Hermitian matrix and $X_n$ is a random matrix with i.i.d. real or complex standardized entries. The fluctuations of the linear statistics of the eigenvalues [operatorname {Trace}f bigl(Sigma_nSigma_n^*bigr)=sum_{i=1}^Nf(lambda_i),qquad (lambda_i) eigenvalues of Sigma_nSigma_n^*,] are shown to be Gaussian, in the regime where both dimensions of matrix $Sigma_n$ go to infinity at the same pace and in the case where $f$ is of class $C^3$, that is, has three continuous derivatives. The main improvements with respect to Bai and Silverstein's CLT [Ann. Probab. 32 (2004) 553-605] are twofold: First, we consider general entries with finite fourth moment, but whose fourth cumulant is nonnull, that is, whose fourth moment may differ from the moment of a (real or complex) Gaussian random variable. As a consequence, extra terms proportional to $ vert mathcal{V}vert ^2=bigl|mathbb{E}bigl(X_{11}^nbigr) ^2bigr|^2$ and $kappa=mathbb{E}bigl vert X_{11}^nbigr vert ^4-vert {mathcal{V}}vert ^2-2$ appear in the limiting variance and in the limiting bias, which not only depend on the spectrum of matrix $R_n$ but also on its eigenvectors. Second, we relax the analyticity assumption over $f$ by representing the linear statistics with the help of Helffer-Sj{o}strand's formula. The CLT is expressed in terms of vanishing L'{e}vy-Prohorov distance between the linear statistics' distribution and a Gaussian probability distribution, the mean and the variance of which depend upon $N$ and $n$ and may not converge." @default.
- W1639175092 created "2016-06-24" @default.
- W1639175092 creator A5016886722 @default.
- W1639175092 creator A5081462645 @default.
- W1639175092 date "2016-06-01" @default.
- W1639175092 modified "2023-10-10" @default.
- W1639175092 title "Gaussian fluctuations for linear spectral statistics of large random covariance matrices" @default.
- W1639175092 cites W1520752838 @default.
- W1639175092 cites W1530056498 @default.
- W1639175092 cites W1580589996 @default.
- W1639175092 cites W1586554030 @default.
- W1639175092 cites W1784259868 @default.
- W1639175092 cites W1965180197 @default.
- W1639175092 cites W1965748679 @default.
- W1639175092 cites W1968451201 @default.
- W1639175092 cites W1969097180 @default.
- W1639175092 cites W1971210014 @default.
- W1639175092 cites W1973335304 @default.
- W1639175092 cites W1976456273 @default.
- W1639175092 cites W1977845152 @default.
- W1639175092 cites W1994231597 @default.
- W1639175092 cites W1995703368 @default.
- W1639175092 cites W1996877328 @default.
- W1639175092 cites W2011892826 @default.
- W1639175092 cites W2013992162 @default.
- W1639175092 cites W2017262500 @default.
- W1639175092 cites W2021481737 @default.
- W1639175092 cites W2035501532 @default.
- W1639175092 cites W2036721045 @default.
- W1639175092 cites W2046514403 @default.
- W1639175092 cites W2067182789 @default.
- W1639175092 cites W2072325299 @default.
- W1639175092 cites W2076641463 @default.
- W1639175092 cites W2078757002 @default.
- W1639175092 cites W2088371690 @default.
- W1639175092 cites W2105647435 @default.
- W1639175092 cites W2116328398 @default.
- W1639175092 cites W2136341714 @default.
- W1639175092 cites W2143803455 @default.
- W1639175092 cites W2147675445 @default.
- W1639175092 cites W2159601979 @default.
- W1639175092 cites W2164464810 @default.
- W1639175092 cites W2963491225 @default.
- W1639175092 cites W3101594136 @default.
- W1639175092 cites W3101643603 @default.
- W1639175092 cites W3103692684 @default.
- W1639175092 cites W3105728987 @default.
- W1639175092 cites W4206855168 @default.
- W1639175092 cites W4213081051 @default.
- W1639175092 cites W4292027056 @default.
- W1639175092 cites W4300093168 @default.
- W1639175092 cites W569133387 @default.
- W1639175092 cites W615589970 @default.
- W1639175092 cites W650759447 @default.
- W1639175092 doi "https://doi.org/10.1214/15-aap1135" @default.
- W1639175092 hasPublicationYear "2016" @default.
- W1639175092 type Work @default.
- W1639175092 sameAs 1639175092 @default.
- W1639175092 citedByCount "23" @default.
- W1639175092 countsByYear W16391750922014 @default.
- W1639175092 countsByYear W16391750922015 @default.
- W1639175092 countsByYear W16391750922017 @default.
- W1639175092 countsByYear W16391750922018 @default.
- W1639175092 countsByYear W16391750922019 @default.
- W1639175092 countsByYear W16391750922020 @default.
- W1639175092 countsByYear W16391750922021 @default.
- W1639175092 countsByYear W16391750922022 @default.
- W1639175092 countsByYear W16391750922023 @default.
- W1639175092 crossrefType "journal-article" @default.
- W1639175092 hasAuthorship W1639175092A5016886722 @default.
- W1639175092 hasAuthorship W1639175092A5081462645 @default.
- W1639175092 hasBestOaLocation W16391750921 @default.
- W1639175092 hasConcept C105795698 @default.
- W1639175092 hasConcept C106487976 @default.
- W1639175092 hasConcept C114614502 @default.
- W1639175092 hasConcept C121332964 @default.
- W1639175092 hasConcept C122123141 @default.
- W1639175092 hasConcept C138405894 @default.
- W1639175092 hasConcept C158693339 @default.
- W1639175092 hasConcept C159985019 @default.
- W1639175092 hasConcept C163716315 @default.
- W1639175092 hasConcept C179254644 @default.
- W1639175092 hasConcept C182514268 @default.
- W1639175092 hasConcept C192562407 @default.
- W1639175092 hasConcept C202444582 @default.
- W1639175092 hasConcept C2778113609 @default.
- W1639175092 hasConcept C33923547 @default.
- W1639175092 hasConcept C37914503 @default.
- W1639175092 hasConcept C62520636 @default.
- W1639175092 hasConcept C64812099 @default.
- W1639175092 hasConcept C94940 @default.
- W1639175092 hasConcept C95707001 @default.
- W1639175092 hasConceptScore W1639175092C105795698 @default.
- W1639175092 hasConceptScore W1639175092C106487976 @default.
- W1639175092 hasConceptScore W1639175092C114614502 @default.
- W1639175092 hasConceptScore W1639175092C121332964 @default.
- W1639175092 hasConceptScore W1639175092C122123141 @default.
- W1639175092 hasConceptScore W1639175092C138405894 @default.
- W1639175092 hasConceptScore W1639175092C158693339 @default.
- W1639175092 hasConceptScore W1639175092C159985019 @default.