Matches in SemOpenAlex for { <https://semopenalex.org/work/W1639574001> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1639574001 endingPage "988" @default.
- W1639574001 startingPage "961" @default.
- W1639574001 abstract "The conjugacy problem asks whether two words over generators of a fixed group G are conjugated, i.e., it is the problem to decide on input words x, y whether there exists z such that $$zx z^{-1} =y$$zxz-1=y in G. The conjugacy problem is more difficult than the word problem, in general. We investigate the conjugacy problem for two prominent groups: the Baumslag---Solitar group $$mathbf{{BS}}_{1,2}$$BS1,2 and the Baumslag group $${mathbf{{G}}}_{1,2}$$G1,2 (also known as Baumslag---Gersten group). The conjugacy problem in $${mathbf{{BS}}}_{1,2}$$BS1,2 is complete for the circuit class $$mathsf {TC}^0$$TC0. To the best of our knowledge $${mathbf{{BS}}}_{1,2}$$BS1,2 is the first natural infinite non-commutative group where such a precise and low complexity is shown. The Baumslag group $${mathbf{{G}}}_{1,2}$$G1,2 is an HNN-extension of $${mathbf{{BS}}}_{1,2}$$BS1,2. Hence, decidability of the conjugacy problem in $$mathbf{{G}}_{1,2}$$G1,2 outside the so-called black hole follows from Borovik et al. (Int J Algebra Comput 17(5/6):963---997, 2007). Decidability everywhere is due to Beese. Moreover, he showed exponential time for the set of elements which cannot be conjugated into $$mathbf{{BS}}_{1,2}$$BS1,2 (Beese 2012). Here we improve Beese's result in two directions by showing that the conjugacy problem in $${mathbf{{G}}}_{1,2}$$G1,2 can be solved in polynomial time in a strongly generic setting. This means that essentially for all inputs, conjugacy in $${mathbf{{G}}}_{1,2}$$G1,2 can be decided efficiently. In contrast, we show that under a plausible assumption the average case complexity of the same problem is non-elementary. Moreover, we provide a lower bound for the conjugacy problem in $${mathbf{{G}}}_{1,2}$$G1,2 by reducing the divisibility problem in power circuits to the conjugacy problem in $${mathbf{{G}}}_{1,2}$$G1,2. The complexity of the divisibility problem in power circuits is an open and interesting problem in integer arithmetic. We conjecture that it cannot be solved in elementary time because we can show that it cannot be solved in elementary time by calculating modulo values in power circuits." @default.
- W1639574001 created "2016-06-24" @default.
- W1639574001 creator A5039441575 @default.
- W1639574001 creator A5054093863 @default.
- W1639574001 creator A5080242212 @default.
- W1639574001 date "2016-01-19" @default.
- W1639574001 modified "2023-09-30" @default.
- W1639574001 title "Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division in Power Circuits" @default.
- W1639574001 cites W1532790179 @default.
- W1639574001 cites W1821434174 @default.
- W1639574001 cites W182615761 @default.
- W1639574001 cites W1980224569 @default.
- W1639574001 cites W1997046888 @default.
- W1639574001 cites W2024091095 @default.
- W1639574001 cites W2024506621 @default.
- W1639574001 cites W2026125631 @default.
- W1639574001 cites W2035594416 @default.
- W1639574001 cites W2052202432 @default.
- W1639574001 cites W2060215977 @default.
- W1639574001 cites W2104285308 @default.
- W1639574001 cites W2106819015 @default.
- W1639574001 cites W2115760473 @default.
- W1639574001 cites W2989813776 @default.
- W1639574001 cites W41330591 @default.
- W1639574001 cites W4292101339 @default.
- W1639574001 doi "https://doi.org/10.1007/s00453-016-0117-z" @default.
- W1639574001 hasPublicationYear "2016" @default.
- W1639574001 type Work @default.
- W1639574001 sameAs 1639574001 @default.
- W1639574001 citedByCount "6" @default.
- W1639574001 countsByYear W16395740012019 @default.
- W1639574001 countsByYear W16395740012020 @default.
- W1639574001 countsByYear W16395740012021 @default.
- W1639574001 countsByYear W16395740012022 @default.
- W1639574001 countsByYear W16395740012023 @default.
- W1639574001 crossrefType "journal-article" @default.
- W1639574001 hasAuthorship W1639574001A5039441575 @default.
- W1639574001 hasAuthorship W1639574001A5054093863 @default.
- W1639574001 hasAuthorship W1639574001A5080242212 @default.
- W1639574001 hasBestOaLocation W16395740012 @default.
- W1639574001 hasConcept C11413529 @default.
- W1639574001 hasConcept C114614502 @default.
- W1639574001 hasConcept C118615104 @default.
- W1639574001 hasConcept C119599485 @default.
- W1639574001 hasConcept C127413603 @default.
- W1639574001 hasConcept C134146338 @default.
- W1639574001 hasConcept C141796577 @default.
- W1639574001 hasConcept C178790620 @default.
- W1639574001 hasConcept C185592680 @default.
- W1639574001 hasConcept C187455244 @default.
- W1639574001 hasConcept C24858836 @default.
- W1639574001 hasConcept C2781311116 @default.
- W1639574001 hasConcept C33923547 @default.
- W1639574001 hasConcept C41008148 @default.
- W1639574001 hasConcept C60798267 @default.
- W1639574001 hasConcept C80444323 @default.
- W1639574001 hasConcept C87945829 @default.
- W1639574001 hasConcept C94375191 @default.
- W1639574001 hasConceptScore W1639574001C11413529 @default.
- W1639574001 hasConceptScore W1639574001C114614502 @default.
- W1639574001 hasConceptScore W1639574001C118615104 @default.
- W1639574001 hasConceptScore W1639574001C119599485 @default.
- W1639574001 hasConceptScore W1639574001C127413603 @default.
- W1639574001 hasConceptScore W1639574001C134146338 @default.
- W1639574001 hasConceptScore W1639574001C141796577 @default.
- W1639574001 hasConceptScore W1639574001C178790620 @default.
- W1639574001 hasConceptScore W1639574001C185592680 @default.
- W1639574001 hasConceptScore W1639574001C187455244 @default.
- W1639574001 hasConceptScore W1639574001C24858836 @default.
- W1639574001 hasConceptScore W1639574001C2781311116 @default.
- W1639574001 hasConceptScore W1639574001C33923547 @default.
- W1639574001 hasConceptScore W1639574001C41008148 @default.
- W1639574001 hasConceptScore W1639574001C60798267 @default.
- W1639574001 hasConceptScore W1639574001C80444323 @default.
- W1639574001 hasConceptScore W1639574001C87945829 @default.
- W1639574001 hasConceptScore W1639574001C94375191 @default.
- W1639574001 hasIssue "4" @default.
- W1639574001 hasLocation W16395740011 @default.
- W1639574001 hasLocation W16395740012 @default.
- W1639574001 hasOpenAccess W1639574001 @default.
- W1639574001 hasPrimaryLocation W16395740011 @default.
- W1639574001 hasRelatedWork W1543216663 @default.
- W1639574001 hasRelatedWork W1967292023 @default.
- W1639574001 hasRelatedWork W1983213115 @default.
- W1639574001 hasRelatedWork W2007873581 @default.
- W1639574001 hasRelatedWork W2058652222 @default.
- W1639574001 hasRelatedWork W2068275484 @default.
- W1639574001 hasRelatedWork W2078952510 @default.
- W1639574001 hasRelatedWork W2082395645 @default.
- W1639574001 hasRelatedWork W2130130502 @default.
- W1639574001 hasRelatedWork W2317343029 @default.
- W1639574001 hasVolume "76" @default.
- W1639574001 isParatext "false" @default.
- W1639574001 isRetracted "false" @default.
- W1639574001 magId "1639574001" @default.
- W1639574001 workType "article" @default.