Matches in SemOpenAlex for { <https://semopenalex.org/work/W163958306> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W163958306 abstract "Introduction Meta-analysis cannot proceed unless each study outcome is on the same metric and has an appropriate sampling variance estimate, the inverse of which is used as the weight in meta-analytic statistics. When comparing treatments for trials that use the same continuous measures across studies, contemporary meta-analytic practice uses the unstandardized mean difference (UMD) to model the difference between the observed means (i.e., ME-MC) rather than representing effects in the standardized mean difference (SMD). A fundamental difference between the two strategies is that the UMD incorporates the observed variance of the measures as a component of the analytical weights (viz., sampling error or inverse variance) in statistically modeling the results for each study. In contrast, the SMD incorporates the measure’s variance directly in the effect size itself (i.e., SMD=[ME−MC]/SD) and not directly in the analytical weights. The UMD approach has been conventional even though its bias and efficiency are unknown; these have also not been compared with the SMD. Also unresolved is which of many possible available equations best optimize statistical modeling for the SMD in use with repeated measures designs (one or two groups). Methods Monte Carlo simulations compared available equations in terms of their bias and efficiency across the many different conditions established by crossing: (1) number of studies in the meta-analysis (k = 10, 20, 50, and 100); (2) mean study sample sizes (5 values of N ranging from small to very large); (3) the ratio of the within-study observed measure variances for experimental and control groups and at pretest and post-test (ratios: 1:1, 2:1, and 4:1); (4) the post-test mean of each pseudo experimental group to achieve 3 parametric effect sizes (δ= 0.25, 0.50, and 0.80); (5) normal versus nonnormal distributions (4 levels); and (6) the between-studies variance (τ2= 0, 0.04, 0.08, 0.16, and 0.32). For the second issue, (7) the correlation between the two conditions was manipulated (ρpre-post = 0, 0.25, 0.50, and 0.75). Results and Conclusions This investigation provides guidance for statistical practice in relation to meta-analysis of studies that compare two groups at one point in time, or that examine repeated measures for one or two groups. Simulations showed that neither standardized or unstandardized effect size indexes had an advantage in terms of bias or efficiency when distributions are normal, when there is no heterogeneity among effects, and when the observed variances of the experimental and control groups are equal. In contrast, when conditions deviate from these ideals, the SMD yields better statistical inferences than UMDs in terms of bias and efficiency. Under high skewness and kurtosis, neither metric has a marked advantage. In general, the standardized index presents the least bias under most conditions and is more efficient than the unstandardized index. Finally, the results comparing estimations of the SMD and its variance suggest that some are preferable to others under certain conditions. The current results imply that the choice of effect size metrics, estimators, and sampling variances can have substantial impact on statistical inferences even under such commonly observed circumstances as normal sampling distributions, large numbers of studies, and studies with large samples, and when effects exhibit heterogeneity. Although using the SMD may make clinical inferences more difficult, use of the SMD does permit inferences about effect size magnitude. The Discussion considers clinical interpretation of results using the SMD and addresses limitations of the current project." @default.
- W163958306 created "2016-06-24" @default.
- W163958306 creator A5019439879 @default.
- W163958306 creator A5074603564 @default.
- W163958306 date "2013-06-07" @default.
- W163958306 modified "2023-09-23" @default.
- W163958306 title "Meta-Analytic Statistical Inferences for Continuous Measure Outcomes as a Function of Effect Size Metric and Other Assumptions" @default.
- W163958306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23741762" @default.
- W163958306 hasPublicationYear "2013" @default.
- W163958306 type Work @default.
- W163958306 sameAs 163958306 @default.
- W163958306 citedByCount "1" @default.
- W163958306 countsByYear W1639583062020 @default.
- W163958306 crossrefType "journal-article" @default.
- W163958306 hasAuthorship W163958306A5019439879 @default.
- W163958306 hasAuthorship W163958306A5074603564 @default.
- W163958306 hasConcept C105795698 @default.
- W163958306 hasConcept C121955636 @default.
- W163958306 hasConcept C124101348 @default.
- W163958306 hasConcept C126322002 @default.
- W163958306 hasConcept C129848803 @default.
- W163958306 hasConcept C144133560 @default.
- W163958306 hasConcept C149782125 @default.
- W163958306 hasConcept C154945302 @default.
- W163958306 hasConcept C162324750 @default.
- W163958306 hasConcept C176217482 @default.
- W163958306 hasConcept C19499675 @default.
- W163958306 hasConcept C196083921 @default.
- W163958306 hasConcept C207467116 @default.
- W163958306 hasConcept C21547014 @default.
- W163958306 hasConcept C2524010 @default.
- W163958306 hasConcept C2776502983 @default.
- W163958306 hasConcept C2780009758 @default.
- W163958306 hasConcept C28804328 @default.
- W163958306 hasConcept C33923547 @default.
- W163958306 hasConcept C41008148 @default.
- W163958306 hasConcept C44249647 @default.
- W163958306 hasConcept C71924100 @default.
- W163958306 hasConcept C95190672 @default.
- W163958306 hasConceptScore W163958306C105795698 @default.
- W163958306 hasConceptScore W163958306C121955636 @default.
- W163958306 hasConceptScore W163958306C124101348 @default.
- W163958306 hasConceptScore W163958306C126322002 @default.
- W163958306 hasConceptScore W163958306C129848803 @default.
- W163958306 hasConceptScore W163958306C144133560 @default.
- W163958306 hasConceptScore W163958306C149782125 @default.
- W163958306 hasConceptScore W163958306C154945302 @default.
- W163958306 hasConceptScore W163958306C162324750 @default.
- W163958306 hasConceptScore W163958306C176217482 @default.
- W163958306 hasConceptScore W163958306C19499675 @default.
- W163958306 hasConceptScore W163958306C196083921 @default.
- W163958306 hasConceptScore W163958306C207467116 @default.
- W163958306 hasConceptScore W163958306C21547014 @default.
- W163958306 hasConceptScore W163958306C2524010 @default.
- W163958306 hasConceptScore W163958306C2776502983 @default.
- W163958306 hasConceptScore W163958306C2780009758 @default.
- W163958306 hasConceptScore W163958306C28804328 @default.
- W163958306 hasConceptScore W163958306C33923547 @default.
- W163958306 hasConceptScore W163958306C41008148 @default.
- W163958306 hasConceptScore W163958306C44249647 @default.
- W163958306 hasConceptScore W163958306C71924100 @default.
- W163958306 hasConceptScore W163958306C95190672 @default.
- W163958306 hasLocation W1639583061 @default.
- W163958306 hasOpenAccess W163958306 @default.
- W163958306 hasPrimaryLocation W1639583061 @default.
- W163958306 hasRelatedWork W2052492289 @default.
- W163958306 hasRelatedWork W2097672669 @default.
- W163958306 hasRelatedWork W2111949622 @default.
- W163958306 hasRelatedWork W2228176122 @default.
- W163958306 hasRelatedWork W2285305693 @default.
- W163958306 hasRelatedWork W2354741924 @default.
- W163958306 hasRelatedWork W2412439801 @default.
- W163958306 hasRelatedWork W2427115207 @default.
- W163958306 hasRelatedWork W2735181364 @default.
- W163958306 hasRelatedWork W2766281042 @default.
- W163958306 hasRelatedWork W2887834142 @default.
- W163958306 hasRelatedWork W2891844700 @default.
- W163958306 hasRelatedWork W2979571097 @default.
- W163958306 hasRelatedWork W2983184714 @default.
- W163958306 hasRelatedWork W2997188255 @default.
- W163958306 hasRelatedWork W2998544656 @default.
- W163958306 hasRelatedWork W3027892425 @default.
- W163958306 hasRelatedWork W3094490993 @default.
- W163958306 hasRelatedWork W3102486286 @default.
- W163958306 hasRelatedWork W3105976344 @default.
- W163958306 isParatext "false" @default.
- W163958306 isRetracted "false" @default.
- W163958306 magId "163958306" @default.
- W163958306 workType "article" @default.