Matches in SemOpenAlex for { <https://semopenalex.org/work/W164029384> ?p ?o ?g. }
- W164029384 abstract "Biomass monitoring, specifically, detecting changes in the biomass or vegetation of a geographical region, is vital for studying the carbon cycle of the system and has significant implications in the context of understanding climate change and its impacts. Recently, several time series change detection methods have been proposed to identify land cover changes in temporal profiles (time series) of vegetation collected using remote sensing instruments. In this paper, we adapt Gaussian process regression to detect changes in such time series in an online fashion. While Gaussian process (GP) has been widely used as a kernel based learning method for regression and classification, their applicability to massive spatio-temporal data sets, such as remote sensing data, has been limited owing to the high computational costs involved. In our previous work we proposed an efficient Toeplitz matrix based solution for scalable GP parameter estimation. In this paper we apply these solutions to a GP based change detection algorithm. The proposed change detection algorithm requires a memory footprint which is linear in the length of the input time series and runs in time which is quadratic to the length of the input time series. Experimental results show that both serial and parallel implementations of our proposed method achieve significant speedups over the serial implementation. Finally, we demonstrate the effectiveness of the proposed change detection method in identifying changes in Normalized Difference Vegetation Index (NDVI) data. Increasing availability of high resolution remote sensing data has encouraged researchers to extract knowledge from these massive spatio-temporal data sets in order to solve different problems pertain- ing to our ecosystem. Land use land cover (LULC) monitoring, specifically identifying changes in land cover, is one such problem that has significant applications in detecting deforestation, crop ro- tation, urbanization, forest fires, and other such phenomenon. The knowledge about the land cover changes can then be used by policy makers to take important decisions regarding urban planning, natural resource management, water source management, etc. In this paper we focus on the problem of identifying changes in the biomass or vegetation in a geographical region. Biomass is defined as the mass of living biological organisms in a unit area. In the context of this study, we restrict our monitoring to plant (specifically crop) biomass over large geographic regions. In recent years biomass monitoring is increasingly becoming important, as biomass is a great source of renewable energy. Moreover, biomass monitoring is also important from the changing climate perspective, as changes in climate are reflected in the change in biomass, and vice versa. The knowledge about biomass changes over time across a geographical region can be used estimate quantitative biophysical parameters which can be incorporated into global climate models. The launch of NASA's Terra satellite in December of 1999, with the Moderate Resolution Imag- ing Spectroradiometer (MODIS) instrument aboard, introduced a new opportunity for terrestrial remote sensing. MODIS data sets represent a new and improved capability for terrestrial satel- lite remote sensing aimed at meeting the needs of global change research. With thirty-six spectral bands, seven designed for use in terrestrial application, MODIS provides daily coverage, of moderate spatial resolution, of most areas on the earth. Land cover products are available in 250m, 500m, or 1000m resolutions (17). MODIS land products are generally available within weeks or even days" @default.
- W164029384 created "2016-06-24" @default.
- W164029384 creator A5003851078 @default.
- W164029384 creator A5065410886 @default.
- W164029384 date "2010-01-01" @default.
- W164029384 modified "2023-09-23" @default.
- W164029384 title "SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS MONITORING USING GAUSSIAN PROCESS" @default.
- W164029384 cites W1483365869 @default.
- W164029384 cites W1510444525 @default.
- W164029384 cites W1537611227 @default.
- W164029384 cites W1587896874 @default.
- W164029384 cites W1746819321 @default.
- W164029384 cites W1816516507 @default.
- W164029384 cites W1964293905 @default.
- W164029384 cites W1965852574 @default.
- W164029384 cites W1984869715 @default.
- W164029384 cites W1985995825 @default.
- W164029384 cites W2000335488 @default.
- W164029384 cites W2029152224 @default.
- W164029384 cites W2031887434 @default.
- W164029384 cites W2033444390 @default.
- W164029384 cites W2035067052 @default.
- W164029384 cites W2037907125 @default.
- W164029384 cites W2048422603 @default.
- W164029384 cites W2052782966 @default.
- W164029384 cites W2058148593 @default.
- W164029384 cites W2075304461 @default.
- W164029384 cites W2087278589 @default.
- W164029384 cites W2093033924 @default.
- W164029384 cites W2095018839 @default.
- W164029384 cites W2100335098 @default.
- W164029384 cites W2104533781 @default.
- W164029384 cites W2111904112 @default.
- W164029384 cites W2112545207 @default.
- W164029384 cites W2113927266 @default.
- W164029384 cites W2124229723 @default.
- W164029384 cites W2133322684 @default.
- W164029384 cites W2159702694 @default.
- W164029384 cites W2160566385 @default.
- W164029384 cites W2160840682 @default.
- W164029384 cites W2282767213 @default.
- W164029384 cites W2518887247 @default.
- W164029384 cites W2798909945 @default.
- W164029384 cites W2904816695 @default.
- W164029384 cites W3098192628 @default.
- W164029384 cites W2096663877 @default.
- W164029384 hasPublicationYear "2010" @default.
- W164029384 type Work @default.
- W164029384 sameAs 164029384 @default.
- W164029384 citedByCount "3" @default.
- W164029384 countsByYear W1640293842018 @default.
- W164029384 crossrefType "journal-article" @default.
- W164029384 hasAuthorship W164029384A5003851078 @default.
- W164029384 hasAuthorship W164029384A5065410886 @default.
- W164029384 hasConcept C11413529 @default.
- W164029384 hasConcept C119857082 @default.
- W164029384 hasConcept C121332964 @default.
- W164029384 hasConcept C124101348 @default.
- W164029384 hasConcept C127413603 @default.
- W164029384 hasConcept C132651083 @default.
- W164029384 hasConcept C143724316 @default.
- W164029384 hasConcept C146978453 @default.
- W164029384 hasConcept C151406439 @default.
- W164029384 hasConcept C151730666 @default.
- W164029384 hasConcept C1549246 @default.
- W164029384 hasConcept C154945302 @default.
- W164029384 hasConcept C163716315 @default.
- W164029384 hasConcept C166957645 @default.
- W164029384 hasConcept C18903297 @default.
- W164029384 hasConcept C19269812 @default.
- W164029384 hasConcept C203595873 @default.
- W164029384 hasConcept C205649164 @default.
- W164029384 hasConcept C2777007095 @default.
- W164029384 hasConcept C2779343474 @default.
- W164029384 hasConcept C41008148 @default.
- W164029384 hasConcept C48044578 @default.
- W164029384 hasConcept C61326573 @default.
- W164029384 hasConcept C62520636 @default.
- W164029384 hasConcept C62649853 @default.
- W164029384 hasConcept C77088390 @default.
- W164029384 hasConcept C86803240 @default.
- W164029384 hasConceptScore W164029384C11413529 @default.
- W164029384 hasConceptScore W164029384C119857082 @default.
- W164029384 hasConceptScore W164029384C121332964 @default.
- W164029384 hasConceptScore W164029384C124101348 @default.
- W164029384 hasConceptScore W164029384C127413603 @default.
- W164029384 hasConceptScore W164029384C132651083 @default.
- W164029384 hasConceptScore W164029384C143724316 @default.
- W164029384 hasConceptScore W164029384C146978453 @default.
- W164029384 hasConceptScore W164029384C151406439 @default.
- W164029384 hasConceptScore W164029384C151730666 @default.
- W164029384 hasConceptScore W164029384C1549246 @default.
- W164029384 hasConceptScore W164029384C154945302 @default.
- W164029384 hasConceptScore W164029384C163716315 @default.
- W164029384 hasConceptScore W164029384C166957645 @default.
- W164029384 hasConceptScore W164029384C18903297 @default.
- W164029384 hasConceptScore W164029384C19269812 @default.
- W164029384 hasConceptScore W164029384C203595873 @default.
- W164029384 hasConceptScore W164029384C205649164 @default.
- W164029384 hasConceptScore W164029384C2777007095 @default.