Matches in SemOpenAlex for { <https://semopenalex.org/work/W1640889922> ?p ?o ?g. }
- W1640889922 endingPage "5400" @default.
- W1640889922 startingPage "5389" @default.
- W1640889922 abstract "This paper deals with designing sensing matrix for compressive sensing systems. Traditionally, the optimal sensing matrix is designed so that the Gram of the equivalent dictionary is as close as possible to a target Gram with small mutual coherence. A novel design strategy is proposed, in which, unlike the traditional approaches, the measure considers of mutual coherence behavior of the equivalent dictionary as well as sparse representation errors of the signals. The optimal sensing matrix is defined as the one that minimizes this measure and hence is expected to be more robust against sparse representation errors. A closed-form solution is derived for the optimal sensing matrix with a given target Gram. An alternating minimization-based algorithm is also proposed for addressing the same problem with the target Gram searched within a set of relaxed equiangular tight frame Grams. The experiments are carried out and the results show that the sensing matrix obtained using the proposed approach outperforms those existing ones using a fixed dictionary in terms of signal reconstruction accuracy for synthetic data and peak signal-to-noise ratio for real images." @default.
- W1640889922 created "2016-06-24" @default.
- W1640889922 creator A5011776430 @default.
- W1640889922 creator A5013584546 @default.
- W1640889922 creator A5014101639 @default.
- W1640889922 creator A5074942308 @default.
- W1640889922 creator A5076729028 @default.
- W1640889922 creator A5081570736 @default.
- W1640889922 date "2015-12-01" @default.
- W1640889922 modified "2023-10-16" @default.
- W1640889922 title "Designing robust sensing matrix for image compression" @default.
- W1640889922 cites W1966907097 @default.
- W1640889922 cites W1972091546 @default.
- W1640889922 cites W1998615394 @default.
- W1640889922 cites W2016278923 @default.
- W1640889922 cites W2017698840 @default.
- W1640889922 cites W2027740031 @default.
- W1640889922 cites W2044762091 @default.
- W1640889922 cites W2057206714 @default.
- W1640889922 cites W2083493778 @default.
- W1640889922 cites W2086869478 @default.
- W1640889922 cites W2102129292 @default.
- W1640889922 cites W2104987624 @default.
- W1640889922 cites W2116148865 @default.
- W1640889922 cites W2119667497 @default.
- W1640889922 cites W2129638195 @default.
- W1640889922 cites W2132702454 @default.
- W1640889922 cites W2134033146 @default.
- W1640889922 cites W2145096794 @default.
- W1640889922 cites W2150359011 @default.
- W1640889922 cites W2153663612 @default.
- W1640889922 cites W2154332973 @default.
- W1640889922 cites W2156593994 @default.
- W1640889922 cites W2160547390 @default.
- W1640889922 cites W2171394227 @default.
- W1640889922 cites W391578156 @default.
- W1640889922 cites W4235713725 @default.
- W1640889922 cites W4250955649 @default.
- W1640889922 cites W4292170079 @default.
- W1640889922 doi "https://doi.org/10.1109/tip.2015.2479474" @default.
- W1640889922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26394420" @default.
- W1640889922 hasPublicationYear "2015" @default.
- W1640889922 type Work @default.
- W1640889922 sameAs 1640889922 @default.
- W1640889922 citedByCount "27" @default.
- W1640889922 countsByYear W16408899222017 @default.
- W1640889922 countsByYear W16408899222018 @default.
- W1640889922 countsByYear W16408899222019 @default.
- W1640889922 countsByYear W16408899222020 @default.
- W1640889922 countsByYear W16408899222021 @default.
- W1640889922 countsByYear W16408899222022 @default.
- W1640889922 countsByYear W16408899222023 @default.
- W1640889922 crossrefType "journal-article" @default.
- W1640889922 hasAuthorship W1640889922A5011776430 @default.
- W1640889922 hasAuthorship W1640889922A5013584546 @default.
- W1640889922 hasAuthorship W1640889922A5014101639 @default.
- W1640889922 hasAuthorship W1640889922A5074942308 @default.
- W1640889922 hasAuthorship W1640889922A5076729028 @default.
- W1640889922 hasAuthorship W1640889922A5081570736 @default.
- W1640889922 hasConcept C104267543 @default.
- W1640889922 hasConcept C105795698 @default.
- W1640889922 hasConcept C106487976 @default.
- W1640889922 hasConcept C11413529 @default.
- W1640889922 hasConcept C121332964 @default.
- W1640889922 hasConcept C124066611 @default.
- W1640889922 hasConcept C124101348 @default.
- W1640889922 hasConcept C124851039 @default.
- W1640889922 hasConcept C147764199 @default.
- W1640889922 hasConcept C153180895 @default.
- W1640889922 hasConcept C154945302 @default.
- W1640889922 hasConcept C158693339 @default.
- W1640889922 hasConcept C159985019 @default.
- W1640889922 hasConcept C163716315 @default.
- W1640889922 hasConcept C192562407 @default.
- W1640889922 hasConcept C199360897 @default.
- W1640889922 hasConcept C2780009758 @default.
- W1640889922 hasConcept C2781181686 @default.
- W1640889922 hasConcept C33923547 @default.
- W1640889922 hasConcept C41008148 @default.
- W1640889922 hasConcept C45900066 @default.
- W1640889922 hasConcept C554190296 @default.
- W1640889922 hasConcept C56372850 @default.
- W1640889922 hasConcept C62520636 @default.
- W1640889922 hasConcept C70958404 @default.
- W1640889922 hasConcept C76155785 @default.
- W1640889922 hasConcept C77246614 @default.
- W1640889922 hasConceptScore W1640889922C104267543 @default.
- W1640889922 hasConceptScore W1640889922C105795698 @default.
- W1640889922 hasConceptScore W1640889922C106487976 @default.
- W1640889922 hasConceptScore W1640889922C11413529 @default.
- W1640889922 hasConceptScore W1640889922C121332964 @default.
- W1640889922 hasConceptScore W1640889922C124066611 @default.
- W1640889922 hasConceptScore W1640889922C124101348 @default.
- W1640889922 hasConceptScore W1640889922C124851039 @default.
- W1640889922 hasConceptScore W1640889922C147764199 @default.
- W1640889922 hasConceptScore W1640889922C153180895 @default.
- W1640889922 hasConceptScore W1640889922C154945302 @default.
- W1640889922 hasConceptScore W1640889922C158693339 @default.