Matches in SemOpenAlex for { <https://semopenalex.org/work/W1641237123> ?p ?o ?g. }
- W1641237123 abstract "This paper proposes a framework for developing a broad variety of soft clustering and learning vector quantization (LVQ) algorithms based on gradient descent minimization of a reformulation function. According to the proposed axiomatic approach to learning vector quantization, the development of specific algorithms reduces to the selection of a generator function. A linear generator function leads to the fuzzy c-means (FCM) and fuzzy LVQ (FLVQ) algorithms while an exponential generator function leads to entropy constrained fuzzy clustering (ECFC) and entropy constrained LVQ (ECLVQ) algorithms. The reformulation of clustering and LVQ algorithms is also extended to supervised learning models through an axiomatic approach proposed for reformulating radial basis function (RBF) neural networks. This approach results in a broad variety of admissible RBF models, while the form of the radial basis functions is determined by a generator function. This paper shows that gradient descent learning makes reformulated RBF neural networks an attractive alternative to conventional feed-forward neural networks." @default.
- W1641237123 created "2016-06-24" @default.
- W1641237123 creator A5045986111 @default.
- W1641237123 date "1999-01-01" @default.
- W1641237123 modified "2023-09-25" @default.
- W1641237123 title "Reformulating Learning Vector Quantization and Radial Basis Neural Networks" @default.
- W1641237123 cites W1501430624 @default.
- W1641237123 cites W1503507189 @default.
- W1641237123 cites W1526963685 @default.
- W1641237123 cites W1550451438 @default.
- W1641237123 cites W1598920732 @default.
- W1641237123 cites W1708490035 @default.
- W1641237123 cites W1856687271 @default.
- W1641237123 cites W1868946290 @default.
- W1641237123 cites W1968799619 @default.
- W1641237123 cites W1979129208 @default.
- W1641237123 cites W1990517717 @default.
- W1641237123 cites W1992903803 @default.
- W1641237123 cites W1995579838 @default.
- W1641237123 cites W2004075725 @default.
- W1641237123 cites W2045256175 @default.
- W1641237123 cites W2047161049 @default.
- W1641237123 cites W2065159348 @default.
- W1641237123 cites W2085400870 @default.
- W1641237123 cites W2086472796 @default.
- W1641237123 cites W2098040733 @default.
- W1641237123 cites W2098646881 @default.
- W1641237123 cites W2104566816 @default.
- W1641237123 cites W2108137523 @default.
- W1641237123 cites W2109261170 @default.
- W1641237123 cites W2113076747 @default.
- W1641237123 cites W2113442785 @default.
- W1641237123 cites W2116201135 @default.
- W1641237123 cites W2118228102 @default.
- W1641237123 cites W2123693488 @default.
- W1641237123 cites W2125193812 @default.
- W1641237123 cites W2128390362 @default.
- W1641237123 cites W2133373196 @default.
- W1641237123 cites W2138238457 @default.
- W1641237123 cites W2138551170 @default.
- W1641237123 cites W2138766941 @default.
- W1641237123 cites W2141581682 @default.
- W1641237123 cites W2152108171 @default.
- W1641237123 cites W2155399784 @default.
- W1641237123 cites W2157709461 @default.
- W1641237123 cites W2157802651 @default.
- W1641237123 cites W2166657034 @default.
- W1641237123 cites W2169157517 @default.
- W1641237123 cites W2171277043 @default.
- W1641237123 cites W23758216 @default.
- W1641237123 cites W650260511 @default.
- W1641237123 cites W2055071356 @default.
- W1641237123 cites W2088655352 @default.
- W1641237123 doi "https://doi.org/10.3233/fi-1999-371208" @default.
- W1641237123 hasPublicationYear "1999" @default.
- W1641237123 type Work @default.
- W1641237123 sameAs 1641237123 @default.
- W1641237123 citedByCount "10" @default.
- W1641237123 crossrefType "journal-article" @default.
- W1641237123 hasAuthorship W1641237123A5045986111 @default.
- W1641237123 hasConcept C11413529 @default.
- W1641237123 hasConcept C153180895 @default.
- W1641237123 hasConcept C153258448 @default.
- W1641237123 hasConcept C154945302 @default.
- W1641237123 hasConcept C199833920 @default.
- W1641237123 hasConcept C33923547 @default.
- W1641237123 hasConcept C40567965 @default.
- W1641237123 hasConcept C41008148 @default.
- W1641237123 hasConcept C50644808 @default.
- W1641237123 hasConcept C73555534 @default.
- W1641237123 hasConcept C93372532 @default.
- W1641237123 hasConceptScore W1641237123C11413529 @default.
- W1641237123 hasConceptScore W1641237123C153180895 @default.
- W1641237123 hasConceptScore W1641237123C153258448 @default.
- W1641237123 hasConceptScore W1641237123C154945302 @default.
- W1641237123 hasConceptScore W1641237123C199833920 @default.
- W1641237123 hasConceptScore W1641237123C33923547 @default.
- W1641237123 hasConceptScore W1641237123C40567965 @default.
- W1641237123 hasConceptScore W1641237123C41008148 @default.
- W1641237123 hasConceptScore W1641237123C50644808 @default.
- W1641237123 hasConceptScore W1641237123C73555534 @default.
- W1641237123 hasConceptScore W1641237123C93372532 @default.
- W1641237123 hasLocation W16412371231 @default.
- W1641237123 hasOpenAccess W1641237123 @default.
- W1641237123 hasPrimaryLocation W16412371231 @default.
- W1641237123 hasRelatedWork W1480883548 @default.
- W1641237123 hasRelatedWork W1495554122 @default.
- W1641237123 hasRelatedWork W1517966362 @default.
- W1641237123 hasRelatedWork W1530070505 @default.
- W1641237123 hasRelatedWork W1535934278 @default.
- W1641237123 hasRelatedWork W1571412364 @default.
- W1641237123 hasRelatedWork W1581952289 @default.
- W1641237123 hasRelatedWork W1843448671 @default.
- W1641237123 hasRelatedWork W1910200154 @default.
- W1641237123 hasRelatedWork W1999490751 @default.
- W1641237123 hasRelatedWork W2065159348 @default.
- W1641237123 hasRelatedWork W2096053111 @default.
- W1641237123 hasRelatedWork W2098040733 @default.
- W1641237123 hasRelatedWork W2127045326 @default.
- W1641237123 hasRelatedWork W2133200011 @default.