Matches in SemOpenAlex for { <https://semopenalex.org/work/W1644330982> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W1644330982 endingPage "120" @default.
- W1644330982 startingPage "109" @default.
- W1644330982 abstract "Quadratic Programming (QP) is the well-studied problem of maximizing over {−1,1} values the quadratic form ∑i≠jaijxixj. QP captures many known combinatorial optimization problems, and assuming the Unique Games conjecture, Semidefinite Programming (SDP) techniques give optimal approximation algorithms. We extend this body of work by initiating the study of Quadratic Programming problems where the variables take values in the domain {−1,0,1}. The specific problem we study is $$begin{aligned} textsf{QP-Ratio} &: mbox{ } max_{{-1,0,1}^n} frac{sum_{i not = j} a_{ij} x_i x_j}{sum x_i^2} end{aligned}$$ This is a natural relative of several well studied problems (in fact Trevisan introduced a normalized variant as a stepping stone towards a spectral algorithm for Max Cut Gain). Quadratic ratio problems are good testbeds for both algorithms and complexity because the techniques used for quadratic problems for the {−1,1} and {0,1} domains do not seem to carry over to the {−1,0,1} domain. We give approximation algorithms and evidence for the hardness of approximating these problems.We consider an SDP relaxation obtained by adding constraints to the natural eigenvalue (or SDP) relaxation for this problem. Using this, we obtain an $tilde{O}(n^{1/3})$ approximation algorithm for QP-ratio. We also give a $tilde{O}(n^{1/4})$ approximation for bipartite graphs, and better algorithms for special cases.As with other problems with ratio objectives (e.g. uniform sparsest cut), it seems difficult to obtain inapproximability results based on P ≠ NP . We give two results that indicate that QP-Ratio is hard to approximate to within any constant factor: one is based on the assumption that random instances of Max k-AND are hard to approximate, and the other makes a connection to a ratio version of Unique Games. We also give a natural distribution on instances of QP-Ratio for which an ne approximation (for e roughly 1/10) seems out of reach of current techniques." @default.
- W1644330982 created "2016-06-24" @default.
- W1644330982 creator A5008657432 @default.
- W1644330982 creator A5014414126 @default.
- W1644330982 creator A5071016611 @default.
- W1644330982 creator A5081431077 @default.
- W1644330982 date "2012-01-01" @default.
- W1644330982 modified "2023-09-25" @default.
- W1644330982 title "On Quadratic Programming with a Ratio Objective" @default.
- W1644330982 cites W1535144194 @default.
- W1644330982 cites W1644330982 @default.
- W1644330982 cites W1970670479 @default.
- W1644330982 cites W1985123706 @default.
- W1644330982 cites W2002025272 @default.
- W1644330982 cites W2019404063 @default.
- W1644330982 cites W2030365814 @default.
- W1644330982 cites W2087038607 @default.
- W1644330982 cites W2109154425 @default.
- W1644330982 cites W2110871651 @default.
- W1644330982 cites W2165732281 @default.
- W1644330982 cites W2167681887 @default.
- W1644330982 cites W2619061098 @default.
- W1644330982 cites W3023108254 @default.
- W1644330982 cites W4253115531 @default.
- W1644330982 cites W67969839 @default.
- W1644330982 doi "https://doi.org/10.1007/978-3-642-31594-7_10" @default.
- W1644330982 hasPublicationYear "2012" @default.
- W1644330982 type Work @default.
- W1644330982 sameAs 1644330982 @default.
- W1644330982 citedByCount "4" @default.
- W1644330982 countsByYear W16443309822012 @default.
- W1644330982 countsByYear W16443309822015 @default.
- W1644330982 countsByYear W16443309822017 @default.
- W1644330982 crossrefType "book-chapter" @default.
- W1644330982 hasAuthorship W1644330982A5008657432 @default.
- W1644330982 hasAuthorship W1644330982A5014414126 @default.
- W1644330982 hasAuthorship W1644330982A5071016611 @default.
- W1644330982 hasAuthorship W1644330982A5081431077 @default.
- W1644330982 hasBestOaLocation W16443309822 @default.
- W1644330982 hasConcept C126255220 @default.
- W1644330982 hasConcept C129844170 @default.
- W1644330982 hasConcept C199360897 @default.
- W1644330982 hasConcept C2524010 @default.
- W1644330982 hasConcept C33923547 @default.
- W1644330982 hasConcept C41008148 @default.
- W1644330982 hasConcept C81845259 @default.
- W1644330982 hasConceptScore W1644330982C126255220 @default.
- W1644330982 hasConceptScore W1644330982C129844170 @default.
- W1644330982 hasConceptScore W1644330982C199360897 @default.
- W1644330982 hasConceptScore W1644330982C2524010 @default.
- W1644330982 hasConceptScore W1644330982C33923547 @default.
- W1644330982 hasConceptScore W1644330982C41008148 @default.
- W1644330982 hasConceptScore W1644330982C81845259 @default.
- W1644330982 hasLocation W16443309821 @default.
- W1644330982 hasLocation W16443309822 @default.
- W1644330982 hasOpenAccess W1644330982 @default.
- W1644330982 hasPrimaryLocation W16443309821 @default.
- W1644330982 hasRelatedWork W1911744185 @default.
- W1644330982 hasRelatedWork W1966349642 @default.
- W1644330982 hasRelatedWork W2056708464 @default.
- W1644330982 hasRelatedWork W2134774409 @default.
- W1644330982 hasRelatedWork W2372034907 @default.
- W1644330982 hasRelatedWork W2391945574 @default.
- W1644330982 hasRelatedWork W2966089465 @default.
- W1644330982 hasRelatedWork W2966411060 @default.
- W1644330982 hasRelatedWork W3164697397 @default.
- W1644330982 hasRelatedWork W2061552033 @default.
- W1644330982 isParatext "false" @default.
- W1644330982 isRetracted "false" @default.
- W1644330982 magId "1644330982" @default.
- W1644330982 workType "book-chapter" @default.