Matches in SemOpenAlex for { <https://semopenalex.org/work/W1644828886> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1644828886 endingPage "246" @default.
- W1644828886 startingPage "219" @default.
- W1644828886 abstract "Recantly, William Crawley-Boevey proposed the definition of a Poisson structure on a noncommutative algebra $A$ based on the Kontsevich principle. His idea was to find the {it weakest} possible structure on $A$ that induces standard (commutative) Poisson structures on all representation spaces $ Rep_V(A) $. It turns out that such a weak Poisson structure on $A$ is a Lie algebra bracket on the 0-th cyclic homology $ HC_0(A) $ satisfying some extra conditions; it was thus called in an {it $ H_0$-Poisson structure}. This paper studies a higher homological extension of this construction. In our more general setting, we show that noncommutative Poisson structures in the above sense behave nicely with respect to homotopy (in the sense that homotopy equivalent NC Poisson structures on $A$ induce (via the derived representation functor) homotopy equivalent Poisson algebra structures on the derved representation schemes $DRep_V(A) $). For an ordinary algebra $A$, a noncommutative Poisson structure on a semifree (more generally, cofibrant) resolution of $A$ yields a graded (super) Lie algebra structure on the full cyclic homology $ HC_bullet(A) $ extending Crawley-Boevey's $H_0$-Poisson structure on $ HC_0(A) $. We call such structures {it derived Poisson structures} on $A$. We also show that derived Poisson structures do arise in nature: the cobar construction $Omega(C)$ of an $(-n)$-cyclic coassociative DG coalgebra (in particular, of the linear dual of a finite dimensional $n$-cyclic DG algebra) $C$ carries a $(2-n)$-double Poisson bracket in the sense of Van den Bergh. This in turn induces a corresponding noncommutative $(2-n)$-Poisson structure on $Omega(C)$. When (the semifree) DG algebra $Omega(C)$ resolves an honest algebra $A$, $A$ acquires a derived $(2-n)$-Poisson structure." @default.
- W1644828886 created "2016-06-24" @default.
- W1644828886 creator A5038060823 @default.
- W1644828886 creator A5074631616 @default.
- W1644828886 creator A5090418403 @default.
- W1644828886 creator A5091861457 @default.
- W1644828886 date "2012-01-01" @default.
- W1644828886 modified "2023-10-03" @default.
- W1644828886 title "Noncommutative Poisson structures, derived representation schemes and Calabi-Yau algebras" @default.
- W1644828886 cites W1513934167 @default.
- W1644828886 cites W1529330216 @default.
- W1644828886 cites W1633862936 @default.
- W1644828886 cites W1834418271 @default.
- W1644828886 cites W1964742158 @default.
- W1644828886 cites W1968479212 @default.
- W1644828886 cites W2004334856 @default.
- W1644828886 cites W2013692878 @default.
- W1644828886 cites W2016776900 @default.
- W1644828886 cites W2025220897 @default.
- W1644828886 cites W2033494588 @default.
- W1644828886 cites W2034685593 @default.
- W1644828886 cites W2035408167 @default.
- W1644828886 cites W2037417588 @default.
- W1644828886 cites W2045044457 @default.
- W1644828886 cites W2052302312 @default.
- W1644828886 cites W2090359466 @default.
- W1644828886 cites W2092481589 @default.
- W1644828886 cites W2137523622 @default.
- W1644828886 cites W2153521840 @default.
- W1644828886 doi "https://doi.org/10.1090/conm/583/11570" @default.
- W1644828886 hasPublicationYear "2012" @default.
- W1644828886 type Work @default.
- W1644828886 sameAs 1644828886 @default.
- W1644828886 citedByCount "16" @default.
- W1644828886 countsByYear W16448288862013 @default.
- W1644828886 countsByYear W16448288862014 @default.
- W1644828886 countsByYear W16448288862015 @default.
- W1644828886 countsByYear W16448288862016 @default.
- W1644828886 countsByYear W16448288862017 @default.
- W1644828886 countsByYear W16448288862018 @default.
- W1644828886 countsByYear W16448288862020 @default.
- W1644828886 countsByYear W16448288862021 @default.
- W1644828886 countsByYear W16448288862023 @default.
- W1644828886 crossrefType "other" @default.
- W1644828886 hasAuthorship W1644828886A5038060823 @default.
- W1644828886 hasAuthorship W1644828886A5074631616 @default.
- W1644828886 hasAuthorship W1644828886A5090418403 @default.
- W1644828886 hasAuthorship W1644828886A5091861457 @default.
- W1644828886 hasBestOaLocation W16448288862 @default.
- W1644828886 hasConcept C100906024 @default.
- W1644828886 hasConcept C105795698 @default.
- W1644828886 hasConcept C136119220 @default.
- W1644828886 hasConcept C158260368 @default.
- W1644828886 hasConcept C17744445 @default.
- W1644828886 hasConcept C199539241 @default.
- W1644828886 hasConcept C202444582 @default.
- W1644828886 hasConcept C2776359362 @default.
- W1644828886 hasConcept C33923547 @default.
- W1644828886 hasConcept C68797384 @default.
- W1644828886 hasConcept C94625758 @default.
- W1644828886 hasConceptScore W1644828886C100906024 @default.
- W1644828886 hasConceptScore W1644828886C105795698 @default.
- W1644828886 hasConceptScore W1644828886C136119220 @default.
- W1644828886 hasConceptScore W1644828886C158260368 @default.
- W1644828886 hasConceptScore W1644828886C17744445 @default.
- W1644828886 hasConceptScore W1644828886C199539241 @default.
- W1644828886 hasConceptScore W1644828886C202444582 @default.
- W1644828886 hasConceptScore W1644828886C2776359362 @default.
- W1644828886 hasConceptScore W1644828886C33923547 @default.
- W1644828886 hasConceptScore W1644828886C68797384 @default.
- W1644828886 hasConceptScore W1644828886C94625758 @default.
- W1644828886 hasLocation W16448288861 @default.
- W1644828886 hasLocation W16448288862 @default.
- W1644828886 hasLocation W16448288863 @default.
- W1644828886 hasOpenAccess W1644828886 @default.
- W1644828886 hasPrimaryLocation W16448288861 @default.
- W1644828886 hasRelatedWork W1513934167 @default.
- W1644828886 hasRelatedWork W2418216742 @default.
- W1644828886 hasRelatedWork W2963288673 @default.
- W1644828886 hasRelatedWork W3084333948 @default.
- W1644828886 hasRelatedWork W3103663186 @default.
- W1644828886 hasRelatedWork W3197194388 @default.
- W1644828886 hasRelatedWork W4221142757 @default.
- W1644828886 hasRelatedWork W4225528152 @default.
- W1644828886 hasRelatedWork W4291672664 @default.
- W1644828886 hasRelatedWork W4297435792 @default.
- W1644828886 isParatext "false" @default.
- W1644828886 isRetracted "false" @default.
- W1644828886 magId "1644828886" @default.
- W1644828886 workType "other" @default.