Matches in SemOpenAlex for { <https://semopenalex.org/work/W164528145> ?p ?o ?g. }
- W164528145 abstract "Consumer electronic systems are getting more and more complex. Consequently, their design is getting more complicated. Typical systems built today are made of different subsystems that work in parallel in order to meet the functional re- quirements of the demanded applications. The types of applications running on such systems usually have inherent timing constraints which should be realized by the system. The analysis of timing guarantees for parallel systems is not a straightforward task. One important category of applications in consumer electronic devices are multimedia applications such as an MP3 player and an MPEG decoder/encoder. Predictable design is the prominent way of simultaneously managing the design complexity of these systems and providing timing guarantees. Timing guarantees cannot be obtained without using analyzable models of computation. Data flow models proved to be a suitable means for modeling and analysis of multimedia applications. Synchronous Data Flow Graphs (SDFGs) is a data flow model of computation that is traditionally used in the domain of Digital Signal Processing (DSP) platforms. Owing to the structural similarity between DSP and multimedia applications, SDFGs are suitable for modeling multimedia applications as well. Besides, various performance metrics can be analyzed using SDFGs. In fact, the combination of expressivity and analysis potential makes SDFGs very interesting in the domain of multimedia applications. This thesis contributes to SDFG analysis. We propose necessary and sufficient conditions to analyze the integrity of SDFGs and we provide techniques to capture prominent performance metrics, namely, throughput and latency. These perfor- mance metrics together with the mentioned sanity checks (conditions) build an appropriate basis for the analysis of the timing behavior of modeled applications. An SDFG is a graph with actors as vertices and channels as edges. Actors represent basic parts of an application which need to be executed. Channels represent data dependencies between actors. Streaming applications essentially continue their execution indefinitely. Therefore, one of the key properties of an SDFG which models such an application is liveness, i.e., whether all actors can run infinitely often. For example, one is usually not interested in a system which completely or partially deadlocks. Another elementary requirement known as boundedness, is whether an implementation of an SDFG is feasible using a lim- ited amount of memory. Necessary and sufficient conditions for liveness and the different types of boundedness are given, as well as algorithms for checking those conditions. Throughput analysis of SDFGs is an important step for verifying throughput requirements of concurrent real-time applications, for instance within design-space exploration activities. In fact, the main reason that SDFGs are used for mod- eling multimedia applications is analysis of the worst-case throughput, as it is essential for providing timing guarantees. Analysis of SDFGs can be hard, since the worst-case complexity of analysis algorithms is often high. This is also true for throughput analysis. In particular, many algorithms involve a conversion to another kind of data flow graph, namely, a homogenous data flow graph, whose size can be exponentially larger than the size of the original graph and in practice often is much larger. The thesis presents a method for throughput analysis of SD- FGs which is based on explicit state-space exploration, avoiding the mentioned conversion. The method, despite its worst-case complexity, works well in practice, while existing methods often fail. Since the state-space exploration method is akin to the simulation of the graph, the result can be easily obtained as a byproduct in existing simulation tools. In various contexts, such as design-space exploration or run-time reconfigu- ration, many throughput computations are required for varying actor execution times. The computations need to be fast because typically very limited resources or time can be dedicated to the analysis. In this thesis, we present methods to compute throughput of an SDFG where execution times of actors can be param- eters. As a result, the throughput of these graphs is obtained in the form of a function of these parameters. Calculation of throughput for different actor exe- cution times is then merely an evaluation of this function for specific parameter values, which is much faster than the standard throughput analysis. Although throughput is a very useful performance indicator for concurrent real-time applications, another important metric is latency. Especially for appli- cations such as video conferencing, telephony and games, latency beyond a certain limit cannot be tolerated. The final contribution of this thesis is an algorithm to determine the minimal achievable latency, providing an execution scheme for executing an SDFG with this latency. In addition, a heuristic is proposed for optimizing latency under a throughput constraint. This heuristic gives optimal latency and throughput results in most cases." @default.
- W164528145 created "2016-06-24" @default.
- W164528145 creator A5055279336 @default.
- W164528145 date "2008-01-01" @default.
- W164528145 modified "2023-09-23" @default.
- W164528145 title "Timing analysis of synchronous data flow graphs" @default.
- W164528145 cites W1530688835 @default.
- W164528145 cites W1539211093 @default.
- W164528145 cites W1542768242 @default.
- W164528145 cites W1589725893 @default.
- W164528145 cites W1682251649 @default.
- W164528145 cites W1917201943 @default.
- W164528145 cites W1973073235 @default.
- W164528145 cites W1983093080 @default.
- W164528145 cites W1993742654 @default.
- W164528145 cites W1994387179 @default.
- W164528145 cites W1996109622 @default.
- W164528145 cites W2000625751 @default.
- W164528145 cites W2031144446 @default.
- W164528145 cites W2033872646 @default.
- W164528145 cites W2036595691 @default.
- W164528145 cites W2036772106 @default.
- W164528145 cites W2049454663 @default.
- W164528145 cites W2049653116 @default.
- W164528145 cites W2055649415 @default.
- W164528145 cites W2070385897 @default.
- W164528145 cites W2079963453 @default.
- W164528145 cites W2083342911 @default.
- W164528145 cites W2083567135 @default.
- W164528145 cites W2096271904 @default.
- W164528145 cites W2097790134 @default.
- W164528145 cites W2097803659 @default.
- W164528145 cites W2101183260 @default.
- W164528145 cites W2101508170 @default.
- W164528145 cites W2102159907 @default.
- W164528145 cites W2102889490 @default.
- W164528145 cites W2106299112 @default.
- W164528145 cites W2108600960 @default.
- W164528145 cites W2108727711 @default.
- W164528145 cites W2110216183 @default.
- W164528145 cites W2118709351 @default.
- W164528145 cites W2120441559 @default.
- W164528145 cites W2126013065 @default.
- W164528145 cites W2131111769 @default.
- W164528145 cites W2141470955 @default.
- W164528145 cites W2144799791 @default.
- W164528145 cites W2146423178 @default.
- W164528145 cites W2149281234 @default.
- W164528145 cites W2150627388 @default.
- W164528145 cites W2151612633 @default.
- W164528145 cites W2153911262 @default.
- W164528145 cites W2154727659 @default.
- W164528145 cites W2157504696 @default.
- W164528145 cites W2163268438 @default.
- W164528145 cites W2164084134 @default.
- W164528145 cites W2165973617 @default.
- W164528145 cites W2168964723 @default.
- W164528145 cites W2169268432 @default.
- W164528145 cites W2170763368 @default.
- W164528145 cites W2279315888 @default.
- W164528145 cites W2541917094 @default.
- W164528145 cites W2693640445 @default.
- W164528145 cites W2798650014 @default.
- W164528145 cites W3004540582 @default.
- W164528145 cites W3145128584 @default.
- W164528145 cites W2072749415 @default.
- W164528145 cites W2485149744 @default.
- W164528145 hasPublicationYear "2008" @default.
- W164528145 type Work @default.
- W164528145 sameAs 164528145 @default.
- W164528145 citedByCount "4" @default.
- W164528145 countsByYear W1645281452013 @default.
- W164528145 countsByYear W1645281452014 @default.
- W164528145 crossrefType "journal-article" @default.
- W164528145 hasAuthorship W164528145A5055279336 @default.
- W164528145 hasConcept C111919701 @default.
- W164528145 hasConcept C113775141 @default.
- W164528145 hasConcept C118505674 @default.
- W164528145 hasConcept C120314980 @default.
- W164528145 hasConcept C149635348 @default.
- W164528145 hasConcept C37135326 @default.
- W164528145 hasConcept C41008148 @default.
- W164528145 hasConcept C489000 @default.
- W164528145 hasConcept C77088390 @default.
- W164528145 hasConcept C79403827 @default.
- W164528145 hasConcept C84462506 @default.
- W164528145 hasConcept C88468194 @default.
- W164528145 hasConcept C9390403 @default.
- W164528145 hasConceptScore W164528145C111919701 @default.
- W164528145 hasConceptScore W164528145C113775141 @default.
- W164528145 hasConceptScore W164528145C118505674 @default.
- W164528145 hasConceptScore W164528145C120314980 @default.
- W164528145 hasConceptScore W164528145C149635348 @default.
- W164528145 hasConceptScore W164528145C37135326 @default.
- W164528145 hasConceptScore W164528145C41008148 @default.
- W164528145 hasConceptScore W164528145C489000 @default.
- W164528145 hasConceptScore W164528145C77088390 @default.
- W164528145 hasConceptScore W164528145C79403827 @default.
- W164528145 hasConceptScore W164528145C84462506 @default.
- W164528145 hasConceptScore W164528145C88468194 @default.