Matches in SemOpenAlex for { <https://semopenalex.org/work/W1645341736> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W1645341736 endingPage "236" @default.
- W1645341736 startingPage "227" @default.
- W1645341736 abstract "Texture patterns of hepatic fibrosis are one of the important biomarkers to diagnose and classify chronic liver disease from initial to end stage on computed tomography (CT) or magnetic resonance (MR) images. Computer-aided diagnosis (CAD) of liver cirrhosis using texture features has become popular in recent research advances. To date, however, properly selecting effective texture features and image parameters is still mostly undetermined and not well-defined. In this study, different types of datasets acquired from CT and MR images are investigated to select the optimal parameters and features for the proper classification of fibrosis.A total of 149 patients were scanned by multi-detector computed tomography (MDCT) and 218 patients were scanned using 1.5T and 3T superconducting MR scanners for an abdominal examination. All cases were verified by needle biopsies as the gold standard of our experiment, ranging from 0 (no fibrosis) to 5 (cirrhosis). For each case, at least four sequenced phase images are acquired by CT or MR scanners: pre-contrast, arterial, portal venous and equilibrium phase. For both imaging modalities, 15 texture features calculated from gray level co-occurrence matrix (GLCM) are extracted within an ROI in liver as one set of input vectors. Each combination of these input subsets is checked by using support vector machine (SVM) with leave-one-case-out method to differentiate fibrosis into two groups: non-cirrhosis or cirrhosis. In addition, 10 ROIs in the liver are manually selected in a disperse manner by experienced radiologist from each sequenced image and each of the 15 features are averaged across the 10 ROIs for each case to reduce the validation time. The number of input items is selected from the various combinations of 15 features, from which the accuracy rate (AR) is calculated by counting the percentage of correct answers on each combination of features aggregated to determine a liver stage score and then compared to the gold standard.According to the accuracy rate (AR) calculated from each combination, the optimal number of texture features to classify liver fibrosis degree ranges from 4 to 7, no matter which modality was utilized. The overall performance calculated by the average sum of maximum AR value of all 15 features is 66.83% in CT images, while 68.14%, and 71.98% in MR images, respectively; among the 15 texture features, mean gray value and entropy are the most commonly used features in all 3 imaging datasets. The correlation feature has the lowest AR value and was removed as an effective feature in all datasets. AR value tends to increase with the injection of contrast agency, and both CT and MR images reach the highest AR performance during the equilibrium phase.Comparing the accuracy of classification with two imaging modalities, the MR images have an advantage over CT images with regards to AR performance of the 15 selected texture features, while 3T MRI is better than 1.5T MRI to classify liver fibrosis. Finally, the texture analysis is more effective during equilibrium phase than in any of the other phased images." @default.
- W1645341736 created "2016-06-24" @default.
- W1645341736 creator A5012436877 @default.
- W1645341736 creator A5015413988 @default.
- W1645341736 creator A5027406783 @default.
- W1645341736 creator A5037138972 @default.
- W1645341736 creator A5074960174 @default.
- W1645341736 creator A5079798809 @default.
- W1645341736 creator A5081800476 @default.
- W1645341736 creator A5090051275 @default.
- W1645341736 date "2015-12-01" @default.
- W1645341736 modified "2023-10-11" @default.
- W1645341736 title "Effective staging of fibrosis by the selected texture features of liver: Which one is better, CT or MR imaging?" @default.
- W1645341736 cites W1577306603 @default.
- W1645341736 cites W1980325398 @default.
- W1645341736 cites W2036604908 @default.
- W1645341736 cites W2051415174 @default.
- W1645341736 cites W2057312656 @default.
- W1645341736 cites W2059298139 @default.
- W1645341736 cites W2059432853 @default.
- W1645341736 cites W2083039650 @default.
- W1645341736 cites W2085779907 @default.
- W1645341736 cites W2112348746 @default.
- W1645341736 cites W2115774529 @default.
- W1645341736 cites W2149796769 @default.
- W1645341736 cites W2156473966 @default.
- W1645341736 cites W2160220630 @default.
- W1645341736 cites W2167003500 @default.
- W1645341736 cites W2321119966 @default.
- W1645341736 cites W2765799726 @default.
- W1645341736 doi "https://doi.org/10.1016/j.compmedimag.2015.09.003" @default.
- W1645341736 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26455963" @default.
- W1645341736 hasPublicationYear "2015" @default.
- W1645341736 type Work @default.
- W1645341736 sameAs 1645341736 @default.
- W1645341736 citedByCount "46" @default.
- W1645341736 countsByYear W16453417362015 @default.
- W1645341736 countsByYear W16453417362016 @default.
- W1645341736 countsByYear W16453417362017 @default.
- W1645341736 countsByYear W16453417362018 @default.
- W1645341736 countsByYear W16453417362019 @default.
- W1645341736 countsByYear W16453417362020 @default.
- W1645341736 countsByYear W16453417362021 @default.
- W1645341736 countsByYear W16453417362022 @default.
- W1645341736 countsByYear W16453417362023 @default.
- W1645341736 crossrefType "journal-article" @default.
- W1645341736 hasAuthorship W1645341736A5012436877 @default.
- W1645341736 hasAuthorship W1645341736A5015413988 @default.
- W1645341736 hasAuthorship W1645341736A5027406783 @default.
- W1645341736 hasAuthorship W1645341736A5037138972 @default.
- W1645341736 hasAuthorship W1645341736A5074960174 @default.
- W1645341736 hasAuthorship W1645341736A5079798809 @default.
- W1645341736 hasAuthorship W1645341736A5081800476 @default.
- W1645341736 hasAuthorship W1645341736A5090051275 @default.
- W1645341736 hasConcept C12267149 @default.
- W1645341736 hasConcept C126322002 @default.
- W1645341736 hasConcept C126838900 @default.
- W1645341736 hasConcept C143409427 @default.
- W1645341736 hasConcept C154945302 @default.
- W1645341736 hasConcept C163716698 @default.
- W1645341736 hasConcept C2777214474 @default.
- W1645341736 hasConcept C2779102576 @default.
- W1645341736 hasConcept C2989005 @default.
- W1645341736 hasConcept C41008148 @default.
- W1645341736 hasConcept C71924100 @default.
- W1645341736 hasConceptScore W1645341736C12267149 @default.
- W1645341736 hasConceptScore W1645341736C126322002 @default.
- W1645341736 hasConceptScore W1645341736C126838900 @default.
- W1645341736 hasConceptScore W1645341736C143409427 @default.
- W1645341736 hasConceptScore W1645341736C154945302 @default.
- W1645341736 hasConceptScore W1645341736C163716698 @default.
- W1645341736 hasConceptScore W1645341736C2777214474 @default.
- W1645341736 hasConceptScore W1645341736C2779102576 @default.
- W1645341736 hasConceptScore W1645341736C2989005 @default.
- W1645341736 hasConceptScore W1645341736C41008148 @default.
- W1645341736 hasConceptScore W1645341736C71924100 @default.
- W1645341736 hasFunder F4320321001 @default.
- W1645341736 hasFunder F4320322725 @default.
- W1645341736 hasLocation W16453417361 @default.
- W1645341736 hasLocation W16453417362 @default.
- W1645341736 hasOpenAccess W1645341736 @default.
- W1645341736 hasPrimaryLocation W16453417361 @default.
- W1645341736 hasRelatedWork W2391842199 @default.
- W1645341736 hasRelatedWork W2400727047 @default.
- W1645341736 hasRelatedWork W2410731038 @default.
- W1645341736 hasRelatedWork W2414226576 @default.
- W1645341736 hasRelatedWork W2415359519 @default.
- W1645341736 hasRelatedWork W2418692721 @default.
- W1645341736 hasRelatedWork W2474652936 @default.
- W1645341736 hasRelatedWork W2498211489 @default.
- W1645341736 hasRelatedWork W2901407291 @default.
- W1645341736 hasRelatedWork W80983882 @default.
- W1645341736 hasVolume "46" @default.
- W1645341736 isParatext "false" @default.
- W1645341736 isRetracted "false" @default.
- W1645341736 magId "1645341736" @default.
- W1645341736 workType "article" @default.