Matches in SemOpenAlex for { <https://semopenalex.org/work/W1645649344> ?p ?o ?g. }
- W1645649344 abstract "Let f(x) belong to L^p(R^n) and R>0. The transform is considered that integrates the function f over (almost) all spheres of radius R in R^n. This operator is known to be non-injective (as one can see by taking Fourier transform). However, the counterexamples that can be easily constructed using Bessel functions of the 1st kind, only belong to L^p if p>2n/(n-1). It has been shown previously by S. Thangavelu that for p not exceeding the critical number 2n/(n-1), the transform is indeed injective. In this article, the support theorem is proven that strengthens this injectivity result. Namely, if K is a convex bounded domain in R^n, the index p is not above 2n/(n-1), and (almost) all the integrals of $f$ over spheres of radius $R$ not intersecting K are equal to zero, then f is supported in the closure of the domain K. In fact, convexity in this case is too strong a condition, and the result holds for any what we call an R-convex domain." @default.
- W1645649344 created "2016-06-24" @default.
- W1645649344 creator A5021561564 @default.
- W1645649344 creator A5077296756 @default.
- W1645649344 date "2009-05-08" @default.
- W1645649344 modified "2023-09-27" @default.
- W1645649344 title "The support theorem for the single radius spherical mean transform" @default.
- W1645649344 cites W144185413 @default.
- W1645649344 cites W1532154335 @default.
- W1645649344 cites W1556192255 @default.
- W1645649344 cites W1559907478 @default.
- W1645649344 cites W1572205355 @default.
- W1645649344 cites W1580601671 @default.
- W1645649344 cites W1586402789 @default.
- W1645649344 cites W1973673533 @default.
- W1645649344 cites W1981335646 @default.
- W1645649344 cites W1993645392 @default.
- W1645649344 cites W2023074414 @default.
- W1645649344 cites W2065903332 @default.
- W1645649344 cites W2078006497 @default.
- W1645649344 cites W2096358753 @default.
- W1645649344 cites W2109331258 @default.
- W1645649344 cites W2149542824 @default.
- W1645649344 cites W2331529631 @default.
- W1645649344 cites W2546141773 @default.
- W1645649344 cites W4821834 @default.
- W1645649344 cites W566602080 @default.
- W1645649344 cites W569923101 @default.
- W1645649344 hasPublicationYear "2009" @default.
- W1645649344 type Work @default.
- W1645649344 sameAs 1645649344 @default.
- W1645649344 citedByCount "3" @default.
- W1645649344 crossrefType "posted-content" @default.
- W1645649344 hasAuthorship W1645649344A5021561564 @default.
- W1645649344 hasAuthorship W1645649344A5077296756 @default.
- W1645649344 hasConcept C102519508 @default.
- W1645649344 hasConcept C106159729 @default.
- W1645649344 hasConcept C107706756 @default.
- W1645649344 hasConcept C112680207 @default.
- W1645649344 hasConcept C114614502 @default.
- W1645649344 hasConcept C121332964 @default.
- W1645649344 hasConcept C1276947 @default.
- W1645649344 hasConcept C128107574 @default.
- W1645649344 hasConcept C134306372 @default.
- W1645649344 hasConcept C145446738 @default.
- W1645649344 hasConcept C146834321 @default.
- W1645649344 hasConcept C162324750 @default.
- W1645649344 hasConcept C178635117 @default.
- W1645649344 hasConcept C2524010 @default.
- W1645649344 hasConcept C33923547 @default.
- W1645649344 hasConcept C34388435 @default.
- W1645649344 hasConcept C34447519 @default.
- W1645649344 hasConcept C36503486 @default.
- W1645649344 hasConcept C38652104 @default.
- W1645649344 hasConcept C41008148 @default.
- W1645649344 hasConcept C72134830 @default.
- W1645649344 hasConcept C72422203 @default.
- W1645649344 hasConceptScore W1645649344C102519508 @default.
- W1645649344 hasConceptScore W1645649344C106159729 @default.
- W1645649344 hasConceptScore W1645649344C107706756 @default.
- W1645649344 hasConceptScore W1645649344C112680207 @default.
- W1645649344 hasConceptScore W1645649344C114614502 @default.
- W1645649344 hasConceptScore W1645649344C121332964 @default.
- W1645649344 hasConceptScore W1645649344C1276947 @default.
- W1645649344 hasConceptScore W1645649344C128107574 @default.
- W1645649344 hasConceptScore W1645649344C134306372 @default.
- W1645649344 hasConceptScore W1645649344C145446738 @default.
- W1645649344 hasConceptScore W1645649344C146834321 @default.
- W1645649344 hasConceptScore W1645649344C162324750 @default.
- W1645649344 hasConceptScore W1645649344C178635117 @default.
- W1645649344 hasConceptScore W1645649344C2524010 @default.
- W1645649344 hasConceptScore W1645649344C33923547 @default.
- W1645649344 hasConceptScore W1645649344C34388435 @default.
- W1645649344 hasConceptScore W1645649344C34447519 @default.
- W1645649344 hasConceptScore W1645649344C36503486 @default.
- W1645649344 hasConceptScore W1645649344C38652104 @default.
- W1645649344 hasConceptScore W1645649344C41008148 @default.
- W1645649344 hasConceptScore W1645649344C72134830 @default.
- W1645649344 hasConceptScore W1645649344C72422203 @default.
- W1645649344 hasLocation W16456493441 @default.
- W1645649344 hasOpenAccess W1645649344 @default.
- W1645649344 hasPrimaryLocation W16456493441 @default.
- W1645649344 hasRelatedWork W1559786980 @default.
- W1645649344 hasRelatedWork W1837374056 @default.
- W1645649344 hasRelatedWork W1967988806 @default.
- W1645649344 hasRelatedWork W1987431962 @default.
- W1645649344 hasRelatedWork W1993029718 @default.
- W1645649344 hasRelatedWork W1999785138 @default.
- W1645649344 hasRelatedWork W2008997916 @default.
- W1645649344 hasRelatedWork W2010761729 @default.
- W1645649344 hasRelatedWork W2027866321 @default.
- W1645649344 hasRelatedWork W2077304843 @default.
- W1645649344 hasRelatedWork W2123975837 @default.
- W1645649344 hasRelatedWork W2124479249 @default.
- W1645649344 hasRelatedWork W2525059836 @default.
- W1645649344 hasRelatedWork W2963592975 @default.
- W1645649344 hasRelatedWork W2999037010 @default.
- W1645649344 hasRelatedWork W3007734022 @default.
- W1645649344 hasRelatedWork W3204559632 @default.
- W1645649344 hasRelatedWork W1995804428 @default.