Matches in SemOpenAlex for { <https://semopenalex.org/work/W1645840676> ?p ?o ?g. }
- W1645840676 endingPage "544" @default.
- W1645840676 startingPage "533" @default.
- W1645840676 abstract "This paper presents a system for weed mapping, using imagery provided by unmanned aerial vehicles (UAVs). Weed control in precision agriculture is based on the design of site-specific control treatments according to weed coverage. A key component is precise and timely weed maps, and one of the crucial steps is weed monitoring, by ground sampling or remote detection. Traditional remote platforms, such as piloted planes and satellites, are not suitable for early weed mapping, given their low spatial and temporal resolutions. Nonetheless, the ultra-high spatial resolution provided by UAVs can be an efficient alternative. The proposed method for weed mapping partitions the image and complements the spectral information with other sources of information. Apart from the well-known vegetation indexes, which are commonly used in precision agriculture, a method for crop row detection is proposed. Given that crops are always organised in rows, this kind of information simplifies the separation between weeds and crops. Finally, the system incorporates classification techniques for the characterisation of pixels as crop, soil and weed. Different machine learning paradigms are compared to identify the best performing strategies, including unsupervised, semi-supervised and supervised techniques. The experiments study the effect of the flight altitude and the sensor used. Our results show that an excellent performance is obtained using very few labelled data complemented with unlabelled data (semi-supervised approach), which motivates the use of weed maps to design site-specific weed control strategies just when farmers implement the early post-emergence weed control." @default.
- W1645840676 created "2016-06-24" @default.
- W1645840676 creator A5039366911 @default.
- W1645840676 creator A5063964437 @default.
- W1645840676 creator A5065093980 @default.
- W1645840676 creator A5081289303 @default.
- W1645840676 creator A5086980043 @default.
- W1645840676 creator A5087993757 @default.
- W1645840676 date "2015-12-01" @default.
- W1645840676 modified "2023-10-18" @default.
- W1645840676 title "A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method" @default.
- W1645840676 cites W1571607292 @default.
- W1645840676 cites W1594573182 @default.
- W1645840676 cites W1963812460 @default.
- W1645840676 cites W1971547344 @default.
- W1645840676 cites W1973700570 @default.
- W1645840676 cites W1977752134 @default.
- W1645840676 cites W2011270889 @default.
- W1645840676 cites W2011430131 @default.
- W1645840676 cites W2013011639 @default.
- W1645840676 cites W2013890590 @default.
- W1645840676 cites W2019416082 @default.
- W1645840676 cites W2032488374 @default.
- W1645840676 cites W2035759078 @default.
- W1645840676 cites W2045297017 @default.
- W1645840676 cites W2055186043 @default.
- W1645840676 cites W2059472991 @default.
- W1645840676 cites W2060992958 @default.
- W1645840676 cites W2063907334 @default.
- W1645840676 cites W2071423370 @default.
- W1645840676 cites W2074464158 @default.
- W1645840676 cites W2080091930 @default.
- W1645840676 cites W2081286693 @default.
- W1645840676 cites W2085932401 @default.
- W1645840676 cites W2094651390 @default.
- W1645840676 cites W2095537868 @default.
- W1645840676 cites W2095905764 @default.
- W1645840676 cites W2098757594 @default.
- W1645840676 cites W2099655127 @default.
- W1645840676 cites W2103748993 @default.
- W1645840676 cites W2119059400 @default.
- W1645840676 cites W2123935991 @default.
- W1645840676 cites W2133059825 @default.
- W1645840676 cites W2163450852 @default.
- W1645840676 cites W2166516660 @default.
- W1645840676 cites W2172000360 @default.
- W1645840676 cites W2243003515 @default.
- W1645840676 cites W2251608823 @default.
- W1645840676 doi "https://doi.org/10.1016/j.asoc.2015.08.027" @default.
- W1645840676 hasPublicationYear "2015" @default.
- W1645840676 type Work @default.
- W1645840676 sameAs 1645840676 @default.
- W1645840676 citedByCount "133" @default.
- W1645840676 countsByYear W16458406762016 @default.
- W1645840676 countsByYear W16458406762017 @default.
- W1645840676 countsByYear W16458406762018 @default.
- W1645840676 countsByYear W16458406762019 @default.
- W1645840676 countsByYear W16458406762020 @default.
- W1645840676 countsByYear W16458406762021 @default.
- W1645840676 countsByYear W16458406762022 @default.
- W1645840676 countsByYear W16458406762023 @default.
- W1645840676 crossrefType "journal-article" @default.
- W1645840676 hasAuthorship W1645840676A5039366911 @default.
- W1645840676 hasAuthorship W1645840676A5063964437 @default.
- W1645840676 hasAuthorship W1645840676A5065093980 @default.
- W1645840676 hasAuthorship W1645840676A5081289303 @default.
- W1645840676 hasAuthorship W1645840676A5086980043 @default.
- W1645840676 hasAuthorship W1645840676A5087993757 @default.
- W1645840676 hasConcept C118518473 @default.
- W1645840676 hasConcept C120217122 @default.
- W1645840676 hasConcept C127413603 @default.
- W1645840676 hasConcept C142724271 @default.
- W1645840676 hasConcept C147273371 @default.
- W1645840676 hasConcept C154945302 @default.
- W1645840676 hasConcept C160633673 @default.
- W1645840676 hasConcept C166957645 @default.
- W1645840676 hasConcept C205649164 @default.
- W1645840676 hasConcept C2775891814 @default.
- W1645840676 hasConcept C2776133958 @default.
- W1645840676 hasConcept C41008148 @default.
- W1645840676 hasConcept C62649853 @default.
- W1645840676 hasConcept C6557445 @default.
- W1645840676 hasConcept C71924100 @default.
- W1645840676 hasConcept C86803240 @default.
- W1645840676 hasConcept C88463610 @default.
- W1645840676 hasConceptScore W1645840676C118518473 @default.
- W1645840676 hasConceptScore W1645840676C120217122 @default.
- W1645840676 hasConceptScore W1645840676C127413603 @default.
- W1645840676 hasConceptScore W1645840676C142724271 @default.
- W1645840676 hasConceptScore W1645840676C147273371 @default.
- W1645840676 hasConceptScore W1645840676C154945302 @default.
- W1645840676 hasConceptScore W1645840676C160633673 @default.
- W1645840676 hasConceptScore W1645840676C166957645 @default.
- W1645840676 hasConceptScore W1645840676C205649164 @default.
- W1645840676 hasConceptScore W1645840676C2775891814 @default.
- W1645840676 hasConceptScore W1645840676C2776133958 @default.
- W1645840676 hasConceptScore W1645840676C41008148 @default.
- W1645840676 hasConceptScore W1645840676C62649853 @default.