Matches in SemOpenAlex for { <https://semopenalex.org/work/W1650381772> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W1650381772 endingPage "7" @default.
- W1650381772 startingPage "1" @default.
- W1650381772 abstract "A brief description of effective Navier-Stokes (NS) numerical technique for high temperature gas flows simulation (HIGHTEMP) is given. The NS codes have been developed for various gas-phase models from perfect gas to thermally and chemically nonequilibrium multicomponent and multitemperature gas medium. Slip effects, finite rate energy exchanges, surface catalysis and ablation can be taken into account in the wall boundary conditions. The software package HIGHTEMP involves codes for radiative heat transfer (RHT) computations. Several turbulence models for calculation of turbulent flows can be employed. For numerical integration of NS and RHT equations TVD type finite volume schemes are used. The solvers have been adopted for parallel high performance computing systems using MPI-technology. Some numerical results obtained with developed technique are presented. INTRODUCTION The development of the robust, efficient and handly numerical technique for gas flow simulation in a wide pressure, temperature and chemical composition range is a challenging task. HIGHTEMP computing system (CS HIGHTEMP) is elaborated in Institute of Mechanics Moscow State University to provide researches of high velocity aerodynamics, heat transfer and supersonic combustion (Gromov V. G., 2002). The HIGHTEMP technique is based on a software package of NS solvers integrated with thermochemical databases. The NS solvers are developed for three levels of the high temperature thermochemical gas-phase models from perfect gas to multitemperature and multicomponent ionized gas medium. Nonequilibrium chemical reactions, ionization, relaxation of internal energy modes can be included in a kinetic model with consideration their coupling. Gas-phase models can be used with various gas-wall interaction models. Slip effects, finite rate energy exchanges, surface catalysis and ablation can be taken into account in formulation of the boundary conditions. The numerical modeling of flows for high Reynolds numbers is carried out in the framework of Favre-averaged Navier-Stokes equations. The Boussinesq approximation for the turbulent fluxes simulation and several turbulence models for calculation of turbulent transport coefficients can be employed. The NS equations are solved on the multiblock structured mesh through a finite volume approach. The inviscid fluxes across cell faces are calculated from result of the exact Riemann problem solution. The interfacial values are defined by the limited onedimensional extrapolation of primitive variables from the cell-centers to the cell faces. The numerical viscous fluxes across cell faces are evaluated using the central and one-sided difference formulas of the second order accuracy. Steady-state solution is defined due implicit iterative procedure. On the every iteration the flowfield parameters are computed due Gauss-Seidel line relaxation numerical method. For time-marching integration of time-dependent NS equations the implicit Runge-Kutta scheme of second order accuracy is used. The NS solvers have been adopted for parallel high performance computing systems using MPI-technology. The software package HIGHTEMP involves codes for radiative heat transfer computations. RHT equations are solved on the same mesh also through finite volume approach. Multigroup optical model is used to calculate absorption and emission coefficients (Surzhikov S.T., 2000). The some examples of CS HIGHTEMP application to Earth and Mars atmospheres entry and flow in discharge channel of plasmatron are presented." @default.
- W1650381772 created "2016-06-24" @default.
- W1650381772 creator A5034122277 @default.
- W1650381772 creator A5085025659 @default.
- W1650381772 creator A5086255705 @default.
- W1650381772 date "2006-01-01" @default.
- W1650381772 modified "2023-09-27" @default.
- W1650381772 title "Hightemp technique of high temperature gas flows numerical simulation" @default.
- W1650381772 cites W1975679219 @default.
- W1650381772 cites W2121627061 @default.
- W1650381772 cites W2324808952 @default.
- W1650381772 hasPublicationYear "2006" @default.
- W1650381772 type Work @default.
- W1650381772 sameAs 1650381772 @default.
- W1650381772 citedByCount "1" @default.
- W1650381772 countsByYear W16503817722015 @default.
- W1650381772 crossrefType "journal-article" @default.
- W1650381772 hasAuthorship W1650381772A5034122277 @default.
- W1650381772 hasAuthorship W1650381772A5085025659 @default.
- W1650381772 hasAuthorship W1650381772A5086255705 @default.
- W1650381772 hasConcept C121332964 @default.
- W1650381772 hasConcept C13393347 @default.
- W1650381772 hasConcept C1633027 @default.
- W1650381772 hasConcept C167191414 @default.
- W1650381772 hasConcept C185592680 @default.
- W1650381772 hasConcept C196558001 @default.
- W1650381772 hasConcept C50478463 @default.
- W1650381772 hasConcept C50517652 @default.
- W1650381772 hasConcept C57879066 @default.
- W1650381772 hasConcept C97355855 @default.
- W1650381772 hasConceptScore W1650381772C121332964 @default.
- W1650381772 hasConceptScore W1650381772C13393347 @default.
- W1650381772 hasConceptScore W1650381772C1633027 @default.
- W1650381772 hasConceptScore W1650381772C167191414 @default.
- W1650381772 hasConceptScore W1650381772C185592680 @default.
- W1650381772 hasConceptScore W1650381772C196558001 @default.
- W1650381772 hasConceptScore W1650381772C50478463 @default.
- W1650381772 hasConceptScore W1650381772C50517652 @default.
- W1650381772 hasConceptScore W1650381772C57879066 @default.
- W1650381772 hasConceptScore W1650381772C97355855 @default.
- W1650381772 hasLocation W16503817721 @default.
- W1650381772 hasOpenAccess W1650381772 @default.
- W1650381772 hasPrimaryLocation W16503817721 @default.
- W1650381772 hasRelatedWork W102311299 @default.
- W1650381772 hasRelatedWork W1613826587 @default.
- W1650381772 hasRelatedWork W184009176 @default.
- W1650381772 hasRelatedWork W1969289585 @default.
- W1650381772 hasRelatedWork W1992508612 @default.
- W1650381772 hasRelatedWork W2005288941 @default.
- W1650381772 hasRelatedWork W2038766058 @default.
- W1650381772 hasRelatedWork W2085939266 @default.
- W1650381772 hasRelatedWork W2093012725 @default.
- W1650381772 hasRelatedWork W2111975804 @default.
- W1650381772 hasRelatedWork W2184037415 @default.
- W1650381772 hasRelatedWork W2214896116 @default.
- W1650381772 hasRelatedWork W2355357542 @default.
- W1650381772 hasRelatedWork W2366032769 @default.
- W1650381772 hasRelatedWork W2556472162 @default.
- W1650381772 hasRelatedWork W2603780294 @default.
- W1650381772 hasRelatedWork W2790692648 @default.
- W1650381772 hasRelatedWork W2955244086 @default.
- W1650381772 hasRelatedWork W3202824521 @default.
- W1650381772 hasRelatedWork W369120126 @default.
- W1650381772 hasVolume "4" @default.
- W1650381772 isParatext "false" @default.
- W1650381772 isRetracted "false" @default.
- W1650381772 magId "1650381772" @default.
- W1650381772 workType "article" @default.