Matches in SemOpenAlex for { <https://semopenalex.org/work/W1650584150> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W1650584150 abstract "The line graph LG of a directed graph G has a vertex for every edge of G and an edge for every path of length 2 in G. In 1967, Knuth used the Matrix-Tree Theorem to prove a formula for the number of spanning trees of LG, and he asked for a bijective proof. In this paper, we give a bijective proof of a generating function identity due to Levine which generalizes Knuth's formula. As a result of this proof we find a bijection between binary de Bruijn sequences of degree n and binary sequences of length 2^{n-1}. Finally, we determine the critical groups of all the Kautz graphs and de Bruijn graphs, generalizing a result of Levine." @default.
- W1650584150 created "2016-06-24" @default.
- W1650584150 creator A5037305170 @default.
- W1650584150 creator A5045322954 @default.
- W1650584150 date "2009-10-19" @default.
- W1650584150 modified "2023-09-27" @default.
- W1650584150 title "Counting the spanning trees of a directed line graph" @default.
- W1650584150 cites W1998018314 @default.
- W1650584150 cites W2012276589 @default.
- W1650584150 cites W2105321516 @default.
- W1650584150 cites W2952803432 @default.
- W1650584150 hasPublicationYear "2009" @default.
- W1650584150 type Work @default.
- W1650584150 sameAs 1650584150 @default.
- W1650584150 citedByCount "2" @default.
- W1650584150 countsByYear W16505841502013 @default.
- W1650584150 crossrefType "posted-content" @default.
- W1650584150 hasAuthorship W1650584150A5037305170 @default.
- W1650584150 hasAuthorship W1650584150A5045322954 @default.
- W1650584150 hasConcept C114614502 @default.
- W1650584150 hasConcept C118615104 @default.
- W1650584150 hasConcept C132525143 @default.
- W1650584150 hasConcept C170320093 @default.
- W1650584150 hasConcept C197855036 @default.
- W1650584150 hasConcept C24424167 @default.
- W1650584150 hasConcept C33923547 @default.
- W1650584150 hasConcept C64331007 @default.
- W1650584150 hasConcept C80899671 @default.
- W1650584150 hasConceptScore W1650584150C114614502 @default.
- W1650584150 hasConceptScore W1650584150C118615104 @default.
- W1650584150 hasConceptScore W1650584150C132525143 @default.
- W1650584150 hasConceptScore W1650584150C170320093 @default.
- W1650584150 hasConceptScore W1650584150C197855036 @default.
- W1650584150 hasConceptScore W1650584150C24424167 @default.
- W1650584150 hasConceptScore W1650584150C33923547 @default.
- W1650584150 hasConceptScore W1650584150C64331007 @default.
- W1650584150 hasConceptScore W1650584150C80899671 @default.
- W1650584150 hasLocation W16505841501 @default.
- W1650584150 hasOpenAccess W1650584150 @default.
- W1650584150 hasPrimaryLocation W16505841501 @default.
- W1650584150 hasRelatedWork W1966460832 @default.
- W1650584150 hasRelatedWork W1967548269 @default.
- W1650584150 hasRelatedWork W1978452004 @default.
- W1650584150 hasRelatedWork W1981103638 @default.
- W1650584150 hasRelatedWork W2018849182 @default.
- W1650584150 hasRelatedWork W2033976647 @default.
- W1650584150 hasRelatedWork W2035649640 @default.
- W1650584150 hasRelatedWork W2047993061 @default.
- W1650584150 hasRelatedWork W2052936935 @default.
- W1650584150 hasRelatedWork W2064769957 @default.
- W1650584150 hasRelatedWork W2105321516 @default.
- W1650584150 hasRelatedWork W2112450630 @default.
- W1650584150 hasRelatedWork W2115358815 @default.
- W1650584150 hasRelatedWork W2141380527 @default.
- W1650584150 hasRelatedWork W2795683249 @default.
- W1650584150 hasRelatedWork W2911403204 @default.
- W1650584150 hasRelatedWork W2963478153 @default.
- W1650584150 hasRelatedWork W2965669173 @default.
- W1650584150 hasRelatedWork W3030515003 @default.
- W1650584150 hasRelatedWork W2479513037 @default.
- W1650584150 isParatext "false" @default.
- W1650584150 isRetracted "false" @default.
- W1650584150 magId "1650584150" @default.
- W1650584150 workType "article" @default.