Matches in SemOpenAlex for { <https://semopenalex.org/work/W165084639> ?p ?o ?g. }
- W165084639 endingPage "217" @default.
- W165084639 startingPage "191" @default.
- W165084639 abstract "Although quartz is one of the most abundant minerals in many rock types, it has not been the focus of in situ quantitative chemical analysis by electron microprobe for a long time. This was simply due to its high purity. Since cathodoluminescence observations reveal a great variety of complex structures within quartz, in situ chemical analysis methods like laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), secondary ion mass spectrometry (SIMS), and electron microprobe (EMP) applied to quartz have received increasing interest from geoscientists. Although the concentrations of many trace elements in quartz are far below the detection limits of an electron microprobe, Al, K, Ti, and Fe are, amongst others, suitable candidates for quantification. The advantage of EMP analysis over other methods is its high spatial resolution combined with high accuracy. Monte Carlo simulations of the elements listed above in a quartz matrix indicate sampling depths of <2.7 μm for 99% of the acquired X-ray photons. Sampling volumes range from 75 to 250 μm3, and depend on excitation energy and defocusing of the electron beam. Unfortunately, beam-induced damage of the quartz lattice limits the use of high beam currents and focused beams. Irradiation induced damage strongly influences the low energy X-ray lines like Al-Kα. The beam sensitivity of the various quartz samples needs to be frequently tested and the analysis protocol must be adapted according to this signal behaviour. To minimise the effect, we propose dividing the measurement of Al into several subsets. Furthermore, exact investigation of the curvature of the background signal is required to avoid systematic errors. Secondary fluorescence of adjacent minerals is an often-neglected problem of trace element analysis by EMP. Joined crystals of pure quartz connected to TiO2, ilmenite (FeTiO3) and sanidine (KAlSi3O8) were used to quantify the effect of secondary fluorescence in quartz. Depending on the location of the disturbing phase, along the “line of sight” of the spectrometer or perpendicular to it, measurable effects above the detection limits can be recognized at distances up to 40 μm for Al, 60 μm for K, 200 μm for Ti and 220 μm for Fe. Depending on the position of the spectrometer relative to an adjacent phase, secondary fluorescence effects vary for Ti and Fe even at larger distances, which has to be taken into account when very low concentrations need to be detected. This effect complicates the application of empirical corrections for secondary fluorescence near phase boundaries. Setting of specific elements on multiple different spectrometers will increase the statistical certainty and can point to secondary fluorescence effects. Using our analysis protocol, detection limits of <10–15 μg g−1 for the elements Al, K, Ti and Fe in quartz can be achieved." @default.
- W165084639 created "2016-06-24" @default.
- W165084639 creator A5021704829 @default.
- W165084639 creator A5060181712 @default.
- W165084639 creator A5091268475 @default.
- W165084639 date "2012-01-01" @default.
- W165084639 modified "2023-10-18" @default.
- W165084639 title "Analysis of Low Element Concentrations in Quartz by Electron Microprobe" @default.
- W165084639 cites W1125849666 @default.
- W165084639 cites W1715599304 @default.
- W165084639 cites W1988790220 @default.
- W165084639 cites W1998886247 @default.
- W165084639 cites W1999496681 @default.
- W165084639 cites W2004108328 @default.
- W165084639 cites W2004949924 @default.
- W165084639 cites W2020837060 @default.
- W165084639 cites W2035708555 @default.
- W165084639 cites W2041164709 @default.
- W165084639 cites W2041389048 @default.
- W165084639 cites W2052443456 @default.
- W165084639 cites W2054791696 @default.
- W165084639 cites W2066695174 @default.
- W165084639 cites W2066857664 @default.
- W165084639 cites W2068705742 @default.
- W165084639 cites W2070951810 @default.
- W165084639 cites W2077080633 @default.
- W165084639 cites W2084829846 @default.
- W165084639 cites W2089038685 @default.
- W165084639 cites W2093049956 @default.
- W165084639 cites W2093482053 @default.
- W165084639 cites W2099183500 @default.
- W165084639 cites W2120160464 @default.
- W165084639 cites W2121347134 @default.
- W165084639 cites W2123379309 @default.
- W165084639 cites W2138587114 @default.
- W165084639 cites W2138677735 @default.
- W165084639 cites W2143766489 @default.
- W165084639 cites W2148603712 @default.
- W165084639 cites W2149459390 @default.
- W165084639 cites W2152524273 @default.
- W165084639 cites W2163502129 @default.
- W165084639 cites W2168976981 @default.
- W165084639 cites W2310328613 @default.
- W165084639 cites W2911773129 @default.
- W165084639 doi "https://doi.org/10.1007/978-3-642-22161-3_9" @default.
- W165084639 hasPublicationYear "2012" @default.
- W165084639 type Work @default.
- W165084639 sameAs 165084639 @default.
- W165084639 citedByCount "14" @default.
- W165084639 countsByYear W1650846392013 @default.
- W165084639 countsByYear W1650846392014 @default.
- W165084639 countsByYear W1650846392016 @default.
- W165084639 countsByYear W1650846392018 @default.
- W165084639 countsByYear W1650846392019 @default.
- W165084639 countsByYear W1650846392020 @default.
- W165084639 countsByYear W1650846392021 @default.
- W165084639 countsByYear W1650846392022 @default.
- W165084639 countsByYear W1650846392023 @default.
- W165084639 crossrefType "book-chapter" @default.
- W165084639 hasAuthorship W165084639A5021704829 @default.
- W165084639 hasAuthorship W165084639A5060181712 @default.
- W165084639 hasAuthorship W165084639A5091268475 @default.
- W165084639 hasConcept C113196181 @default.
- W165084639 hasConcept C125206250 @default.
- W165084639 hasConcept C127313418 @default.
- W165084639 hasConcept C138411078 @default.
- W165084639 hasConcept C185592680 @default.
- W165084639 hasConcept C191897082 @default.
- W165084639 hasConcept C192562407 @default.
- W165084639 hasConcept C199289684 @default.
- W165084639 hasConcept C2779870107 @default.
- W165084639 hasConcept C43617362 @default.
- W165084639 hasConceptScore W165084639C113196181 @default.
- W165084639 hasConceptScore W165084639C125206250 @default.
- W165084639 hasConceptScore W165084639C127313418 @default.
- W165084639 hasConceptScore W165084639C138411078 @default.
- W165084639 hasConceptScore W165084639C185592680 @default.
- W165084639 hasConceptScore W165084639C191897082 @default.
- W165084639 hasConceptScore W165084639C192562407 @default.
- W165084639 hasConceptScore W165084639C199289684 @default.
- W165084639 hasConceptScore W165084639C2779870107 @default.
- W165084639 hasConceptScore W165084639C43617362 @default.
- W165084639 hasLocation W1650846391 @default.
- W165084639 hasOpenAccess W165084639 @default.
- W165084639 hasPrimaryLocation W1650846391 @default.
- W165084639 hasRelatedWork W1979537824 @default.
- W165084639 hasRelatedWork W1983140286 @default.
- W165084639 hasRelatedWork W2062098837 @default.
- W165084639 hasRelatedWork W2072832373 @default.
- W165084639 hasRelatedWork W2129306132 @default.
- W165084639 hasRelatedWork W2184763111 @default.
- W165084639 hasRelatedWork W2731175208 @default.
- W165084639 hasRelatedWork W334339473 @default.
- W165084639 hasRelatedWork W4285594466 @default.
- W165084639 hasRelatedWork W2088347803 @default.
- W165084639 isParatext "false" @default.
- W165084639 isRetracted "false" @default.
- W165084639 magId "165084639" @default.