Matches in SemOpenAlex for { <https://semopenalex.org/work/W165097384> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W165097384 abstract "We show that if u is a p harmonic function, 1 < p < ∞, in the unit disk and equal to a polynomial P of positive degree on the boundary of this disk, then ∇u has at most degP − 1 zeros in the unit disk. In this note we prove the following theorem. Theorem 1 Given p, 1 < p <∞, let u be a real valued weak solution to ∇ · (|∇u|∇u) = 0 (*) in D = {(x1, x2) : x1 + x 2 2 < 1} ⊂ R 2 with u = P on ∂ D where P is a real polynomial in x1, x2 of degree m ≥ 1. Then ∇u has at most m− 1 zeros in D counted according to multiplicity. In (*), ∇· denotes the divergence operator while ∇u denotes the gradient of u. The above theorem answers a question in the affirmative first posed by D. Khavinson in connection with determining the extremal functions for certain linear functionals in the Bergman space of p th power integrable analytic functions on D, 1 < p < ∞. We note that the differential operator in (*) is often called the p Laplacian and it is well known (see [GT]) that solutions to this equation are infinitely differentiable (in fact real analytic) at each point where ∇u 6= 0 while (*) is degenerate elliptic at each point where ∇u = 0. The above theorem appears to be the first of its kind to establish independent of p and the structure constants for the p Laplacian, a bound (m 1) for the number of points in D where (*) degenerates. Because of this independence we conjecture that our theorem also remains true for p = ∞ and the so called ∞ Laplacian (see [BBM] or [J] for definitions). Finally we remark that in [Al] a result, in the same spirit as ours, is obtained for smooth linear equations whose matrix of coefficients has determinant one. ∗1991 Mathematics Subject Classifications: 35J70, 35B05." @default.
- W165097384 created "2016-06-24" @default.
- W165097384 creator A5087083467 @default.
- W165097384 date "1994-07-06" @default.
- W165097384 modified "2023-09-23" @default.
- W165097384 title "On Critical Points of p Harmonic Functions in the Plane" @default.
- W165097384 cites W1866311589 @default.
- W165097384 cites W1969768229 @default.
- W165097384 cites W1982843850 @default.
- W165097384 cites W1985093954 @default.
- W165097384 cites W96149590 @default.
- W165097384 hasPublicationYear "1994" @default.
- W165097384 type Work @default.
- W165097384 sameAs 165097384 @default.
- W165097384 citedByCount "3" @default.
- W165097384 countsByYear W1650973842012 @default.
- W165097384 countsByYear W1650973842013 @default.
- W165097384 crossrefType "journal-article" @default.
- W165097384 hasAuthorship W165097384A5087083467 @default.
- W165097384 hasConcept C114614502 @default.
- W165097384 hasConcept C121332964 @default.
- W165097384 hasConcept C134306372 @default.
- W165097384 hasConcept C165700671 @default.
- W165097384 hasConcept C179117685 @default.
- W165097384 hasConcept C202615002 @default.
- W165097384 hasConcept C24890656 @default.
- W165097384 hasConcept C2775997480 @default.
- W165097384 hasConcept C2780990831 @default.
- W165097384 hasConcept C33923547 @default.
- W165097384 hasConcept C47177299 @default.
- W165097384 hasConcept C627467 @default.
- W165097384 hasConcept C90119067 @default.
- W165097384 hasConceptScore W165097384C114614502 @default.
- W165097384 hasConceptScore W165097384C121332964 @default.
- W165097384 hasConceptScore W165097384C134306372 @default.
- W165097384 hasConceptScore W165097384C165700671 @default.
- W165097384 hasConceptScore W165097384C179117685 @default.
- W165097384 hasConceptScore W165097384C202615002 @default.
- W165097384 hasConceptScore W165097384C24890656 @default.
- W165097384 hasConceptScore W165097384C2775997480 @default.
- W165097384 hasConceptScore W165097384C2780990831 @default.
- W165097384 hasConceptScore W165097384C33923547 @default.
- W165097384 hasConceptScore W165097384C47177299 @default.
- W165097384 hasConceptScore W165097384C627467 @default.
- W165097384 hasConceptScore W165097384C90119067 @default.
- W165097384 hasLocation W1650973841 @default.
- W165097384 hasOpenAccess W165097384 @default.
- W165097384 hasPrimaryLocation W1650973841 @default.
- W165097384 hasRelatedWork W1519468350 @default.
- W165097384 hasRelatedWork W1698262160 @default.
- W165097384 hasRelatedWork W1967761078 @default.
- W165097384 hasRelatedWork W1972077401 @default.
- W165097384 hasRelatedWork W1972832342 @default.
- W165097384 hasRelatedWork W1976592165 @default.
- W165097384 hasRelatedWork W2012545351 @default.
- W165097384 hasRelatedWork W2026718276 @default.
- W165097384 hasRelatedWork W2031815298 @default.
- W165097384 hasRelatedWork W2031993666 @default.
- W165097384 hasRelatedWork W2034050812 @default.
- W165097384 hasRelatedWork W2034188389 @default.
- W165097384 hasRelatedWork W2056923387 @default.
- W165097384 hasRelatedWork W2065603880 @default.
- W165097384 hasRelatedWork W2118872371 @default.
- W165097384 hasRelatedWork W2358205793 @default.
- W165097384 hasRelatedWork W2374487694 @default.
- W165097384 hasRelatedWork W2460073617 @default.
- W165097384 hasRelatedWork W2921450000 @default.
- W165097384 hasRelatedWork W2286705771 @default.
- W165097384 isParatext "false" @default.
- W165097384 isRetracted "false" @default.
- W165097384 magId "165097384" @default.
- W165097384 workType "article" @default.