Matches in SemOpenAlex for { <https://semopenalex.org/work/W1656738984> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W1656738984 endingPage "121" @default.
- W1656738984 startingPage "119" @default.
- W1656738984 abstract "HE governing equations for a continuous, homogeneous, compressible, viscous, heat conducting, Stokesian fluid are of considerable mathematical complexity. This fact coupled with the usual fluid dynamic boundary conditions has limited the number of known analytical solutions. Consequently a number of numerical solutions of these equations have been investigated. Reference 1 provides a recent survey of these investigations. These numerical investigations generally require the numerical specification of some upstream or far field parameter such as Mach number or Reynolds number. Alternately the numerical specification of some boundary condition parameter is required. Thus, each example of these numerical solutions is applicable for only the one value of the numerically specified parameter. Considering the large number of applicable parameters, a parametric analysis of the solutions is both formidable and expensive. The transformation presented below eliminates, to a large extent, the necessity of numerically specifying far field or boundary condition parameters. In deriving the transformation the flow is considered to be steady, two-dimensional and without body forces or bulk rate of heat addition. An ideal gas (P = pRT) is assumed along with a power law viscosity relation ijjir = C(T/T^f° where the r subscript denotes some reference state and C is the ChapmanRubesin constant.2 Finally a constant Prandtl number is assumed. For these specified conditions the compressible NavierStokes equations (continuity, momentum, and energy) in cartesian coordinates are well known.3 Extension to threedimensional flows with body forces and bulk rate of heat addition is straightforward. The analysis is begun by introducing a stream function i//y = pu;l/x = — pv which satisfies the continuity equation. The resulting forms of the momentum and energy equations are then transformed by introducing dependent variable stretchings * = p00V«V, H = H00H/, p = p^p', P = P»F, T=TaoT', k = kaokf. Using these transformations the diffusion term in the energy equation becomes (knTJUmHnpJ{VTx^x + (VTy')}. Using the definition of the stagnation enthalpy H = h+ U 2/2 where h is the static enthalpy and U2 = u2 + v2 along with the approximation that H^ = h^ + U^2/2 = U^2/2 in hypersonic flow allows writing this term as" @default.
- W1656738984 created "2016-06-24" @default.
- W1656738984 creator A5020021129 @default.
- W1656738984 date "1973-01-01" @default.
- W1656738984 modified "2023-09-27" @default.
- W1656738984 title "Transformation of the hypersonic compressible Navier-Stokes equations." @default.
- W1656738984 cites W1543358641 @default.
- W1656738984 cites W2038513071 @default.
- W1656738984 cites W2066626169 @default.
- W1656738984 cites W2071303239 @default.
- W1656738984 doi "https://doi.org/10.2514/3.6685" @default.
- W1656738984 hasPublicationYear "1973" @default.
- W1656738984 type Work @default.
- W1656738984 sameAs 1656738984 @default.
- W1656738984 citedByCount "1" @default.
- W1656738984 countsByYear W16567389842020 @default.
- W1656738984 crossrefType "journal-article" @default.
- W1656738984 hasAuthorship W1656738984A5020021129 @default.
- W1656738984 hasConcept C104317684 @default.
- W1656738984 hasConcept C121332964 @default.
- W1656738984 hasConcept C122824865 @default.
- W1656738984 hasConcept C127413603 @default.
- W1656738984 hasConcept C146978453 @default.
- W1656738984 hasConcept C1633027 @default.
- W1656738984 hasConcept C185592680 @default.
- W1656738984 hasConcept C198813307 @default.
- W1656738984 hasConcept C204241405 @default.
- W1656738984 hasConcept C2781278361 @default.
- W1656738984 hasConcept C32526432 @default.
- W1656738984 hasConcept C55493867 @default.
- W1656738984 hasConcept C57879066 @default.
- W1656738984 hasConcept C74650414 @default.
- W1656738984 hasConcept C84655787 @default.
- W1656738984 hasConceptScore W1656738984C104317684 @default.
- W1656738984 hasConceptScore W1656738984C121332964 @default.
- W1656738984 hasConceptScore W1656738984C122824865 @default.
- W1656738984 hasConceptScore W1656738984C127413603 @default.
- W1656738984 hasConceptScore W1656738984C146978453 @default.
- W1656738984 hasConceptScore W1656738984C1633027 @default.
- W1656738984 hasConceptScore W1656738984C185592680 @default.
- W1656738984 hasConceptScore W1656738984C198813307 @default.
- W1656738984 hasConceptScore W1656738984C204241405 @default.
- W1656738984 hasConceptScore W1656738984C2781278361 @default.
- W1656738984 hasConceptScore W1656738984C32526432 @default.
- W1656738984 hasConceptScore W1656738984C55493867 @default.
- W1656738984 hasConceptScore W1656738984C57879066 @default.
- W1656738984 hasConceptScore W1656738984C74650414 @default.
- W1656738984 hasConceptScore W1656738984C84655787 @default.
- W1656738984 hasIssue "1" @default.
- W1656738984 hasLocation W16567389841 @default.
- W1656738984 hasOpenAccess W1656738984 @default.
- W1656738984 hasPrimaryLocation W16567389841 @default.
- W1656738984 hasRelatedWork W1973123155 @default.
- W1656738984 hasRelatedWork W2056386433 @default.
- W1656738984 hasRelatedWork W2061414408 @default.
- W1656738984 hasRelatedWork W2237321654 @default.
- W1656738984 hasRelatedWork W291562166 @default.
- W1656738984 hasRelatedWork W4230375989 @default.
- W1656738984 hasRelatedWork W4308198685 @default.
- W1656738984 hasRelatedWork W4309309295 @default.
- W1656738984 hasRelatedWork W4317597213 @default.
- W1656738984 hasRelatedWork W4376606121 @default.
- W1656738984 hasVolume "11" @default.
- W1656738984 isParatext "false" @default.
- W1656738984 isRetracted "false" @default.
- W1656738984 magId "1656738984" @default.
- W1656738984 workType "article" @default.