Matches in SemOpenAlex for { <https://semopenalex.org/work/W1657432815> ?p ?o ?g. }
- W1657432815 endingPage "209" @default.
- W1657432815 startingPage "194" @default.
- W1657432815 abstract "The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8‰) occurred among HANPs populations during cotransport responding to IS and flow rate changes. This fractionation is most likely a result of hetero-aggregation between hematite and HANPs that favors light phosphate isotopes (P16O4). This interpretation is further supported by the increase in isotope fractionation at higher ISs (i.e., greater aggregation). However, the fractionation was progressively erased by decreasing flow rate, ascribed to the reduced mass transfer of HANPs between the influent and effluent. Together our findings suggest that the cotransport and retention of HANPs and hematite colloids are highly sensitive to the considered physicochemical factors, and isotope tracing could serve as a promising tool to identify the sources and transport of phosphate-based NPs in complex subsurface environments due to insignificant transport-related isotope fractionation." @default.
- W1657432815 created "2016-06-24" @default.
- W1657432815 creator A5033179523 @default.
- W1657432815 creator A5077934912 @default.
- W1657432815 date "2015-11-01" @default.
- W1657432815 modified "2023-10-16" @default.
- W1657432815 title "Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation" @default.
- W1657432815 cites W118738087 @default.
- W1657432815 cites W1966145007 @default.
- W1657432815 cites W1966653689 @default.
- W1657432815 cites W1969673391 @default.
- W1657432815 cites W1978566809 @default.
- W1657432815 cites W1981183767 @default.
- W1657432815 cites W1984501991 @default.
- W1657432815 cites W1984911535 @default.
- W1657432815 cites W1985206003 @default.
- W1657432815 cites W1985985693 @default.
- W1657432815 cites W1986576053 @default.
- W1657432815 cites W1986675275 @default.
- W1657432815 cites W1987078617 @default.
- W1657432815 cites W1988153865 @default.
- W1657432815 cites W1988192950 @default.
- W1657432815 cites W1990718045 @default.
- W1657432815 cites W1991538415 @default.
- W1657432815 cites W1994300331 @default.
- W1657432815 cites W1995239399 @default.
- W1657432815 cites W1997170235 @default.
- W1657432815 cites W1998588905 @default.
- W1657432815 cites W2003399960 @default.
- W1657432815 cites W2012930274 @default.
- W1657432815 cites W2013594472 @default.
- W1657432815 cites W2015468986 @default.
- W1657432815 cites W2019849665 @default.
- W1657432815 cites W2020973594 @default.
- W1657432815 cites W2022248041 @default.
- W1657432815 cites W2027671997 @default.
- W1657432815 cites W2028244107 @default.
- W1657432815 cites W2029289940 @default.
- W1657432815 cites W2029626463 @default.
- W1657432815 cites W2042386975 @default.
- W1657432815 cites W2043646839 @default.
- W1657432815 cites W2047806096 @default.
- W1657432815 cites W2055675204 @default.
- W1657432815 cites W2057697660 @default.
- W1657432815 cites W2060781615 @default.
- W1657432815 cites W2061338944 @default.
- W1657432815 cites W2063401196 @default.
- W1657432815 cites W2065426757 @default.
- W1657432815 cites W2066185238 @default.
- W1657432815 cites W2067786452 @default.
- W1657432815 cites W2072067644 @default.
- W1657432815 cites W2074470177 @default.
- W1657432815 cites W2074577839 @default.
- W1657432815 cites W2075435443 @default.
- W1657432815 cites W2080344604 @default.
- W1657432815 cites W2083201436 @default.
- W1657432815 cites W2084271505 @default.
- W1657432815 cites W2084533931 @default.
- W1657432815 cites W2087070363 @default.
- W1657432815 cites W2090543559 @default.
- W1657432815 cites W2101940179 @default.
- W1657432815 cites W2114702316 @default.
- W1657432815 cites W2125144207 @default.
- W1657432815 cites W2129460066 @default.
- W1657432815 cites W2130221606 @default.
- W1657432815 cites W2134307060 @default.
- W1657432815 cites W2143178282 @default.
- W1657432815 cites W2159892728 @default.
- W1657432815 cites W2161905930 @default.
- W1657432815 cites W2163728586 @default.
- W1657432815 cites W2164175962 @default.
- W1657432815 cites W2236840787 @default.
- W1657432815 cites W2239901075 @default.
- W1657432815 cites W2319520699 @default.
- W1657432815 cites W2329236809 @default.
- W1657432815 cites W2332946011 @default.
- W1657432815 cites W2401319464 @default.
- W1657432815 cites W4235212118 @default.
- W1657432815 cites W4236010733 @default.
- W1657432815 cites W4379474400 @default.
- W1657432815 doi "https://doi.org/10.1016/j.jconhyd.2015.09.004" @default.
- W1657432815 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26409895" @default.
- W1657432815 hasPublicationYear "2015" @default.
- W1657432815 type Work @default.
- W1657432815 sameAs 1657432815 @default.
- W1657432815 citedByCount "36" @default.
- W1657432815 countsByYear W16574328152016 @default.
- W1657432815 countsByYear W16574328152017 @default.
- W1657432815 countsByYear W16574328152018 @default.
- W1657432815 countsByYear W16574328152019 @default.
- W1657432815 countsByYear W16574328152020 @default.
- W1657432815 countsByYear W16574328152021 @default.
- W1657432815 countsByYear W16574328152022 @default.
- W1657432815 countsByYear W16574328152023 @default.
- W1657432815 crossrefType "journal-article" @default.
- W1657432815 hasAuthorship W1657432815A5033179523 @default.
- W1657432815 hasAuthorship W1657432815A5077934912 @default.
- W1657432815 hasBestOaLocation W16574328151 @default.