Matches in SemOpenAlex for { <https://semopenalex.org/work/W1660287306> ?p ?o ?g. }
- W1660287306 abstract "Self-avoiding lattice polygons, i.e. embeddings of simple closed curves in a lattice, have been studied for more than fifty years. They are interesting as models of ring polymers in solution in good solvents and they appear in graphical expansions in, for instance, the Ising problem. They have been counted exactly (see e.g. [17]) and studied by Monte Carlo methods (see e.g. [22]). We understand many of their properties but rigorous results are scarce. In 1961 Hammersley [11] showed that they grow exponentially at the same rate as self-avoiding walks—a result which was by no means obvious at the time—but we still know very little about the sub-dominant asymptotic behaviour, except in dimensions higher than four where lace expansion techniques are useful. This chapter will review some of the results which have been established rigorously. Apart from results about the numbers of polygons we also discuss counting polygons by both perimeter and area, which gives an interesting model of vesicles and how they respond to an osmotic force. This is closely related to the problem of self-avoiding surfaces. In three dimensions polygons can be knotted, and we investigate what is known rigorously about knot probabilities. There are many open questions in this area and we mention some of these. We then turn to polygons with a geometrical constraint and consider polygons confined to a wedge or to a slit or slab. The main interest has focussed on whether the constraint changes the exponential growth rate of the number of polygons. Finally we give a brief account of some results on lattice trees and lattice animals." @default.
- W1660287306 created "2016-06-24" @default.
- W1660287306 creator A5035611166 @default.
- W1660287306 date "2009-01-01" @default.
- W1660287306 modified "2023-09-25" @default.
- W1660287306 title "Lattice Polygons and Related Objects" @default.
- W1660287306 cites W1963845823 @default.
- W1660287306 cites W1966853719 @default.
- W1660287306 cites W1973566077 @default.
- W1660287306 cites W1974888333 @default.
- W1660287306 cites W1975747249 @default.
- W1660287306 cites W1976147620 @default.
- W1660287306 cites W1986132710 @default.
- W1660287306 cites W2010357721 @default.
- W1660287306 cites W2012068660 @default.
- W1660287306 cites W2016120835 @default.
- W1660287306 cites W2020987782 @default.
- W1660287306 cites W2022316324 @default.
- W1660287306 cites W2028553981 @default.
- W1660287306 cites W2034647396 @default.
- W1660287306 cites W2057396406 @default.
- W1660287306 cites W2058301955 @default.
- W1660287306 cites W2067293120 @default.
- W1660287306 cites W2068490467 @default.
- W1660287306 cites W2069932901 @default.
- W1660287306 cites W2073400538 @default.
- W1660287306 cites W2076408525 @default.
- W1660287306 cites W2085529455 @default.
- W1660287306 cites W2094124635 @default.
- W1660287306 cites W2103802982 @default.
- W1660287306 cites W2105621327 @default.
- W1660287306 cites W2166579662 @default.
- W1660287306 cites W2167263846 @default.
- W1660287306 cites W3103456995 @default.
- W1660287306 cites W3104467049 @default.
- W1660287306 cites W3125076929 @default.
- W1660287306 cites W3126100257 @default.
- W1660287306 cites W4254180029 @default.
- W1660287306 doi "https://doi.org/10.1007/978-1-4020-9927-4_2" @default.
- W1660287306 hasPublicationYear "2009" @default.
- W1660287306 type Work @default.
- W1660287306 sameAs 1660287306 @default.
- W1660287306 citedByCount "2" @default.
- W1660287306 countsByYear W16602873062017 @default.
- W1660287306 crossrefType "book-chapter" @default.
- W1660287306 hasAuthorship W1660287306A5035611166 @default.
- W1660287306 hasConcept C105795698 @default.
- W1660287306 hasConcept C112680207 @default.
- W1660287306 hasConcept C114614502 @default.
- W1660287306 hasConcept C121332964 @default.
- W1660287306 hasConcept C121864883 @default.
- W1660287306 hasConcept C126042441 @default.
- W1660287306 hasConcept C134306372 @default.
- W1660287306 hasConcept C151376022 @default.
- W1660287306 hasConcept C190694206 @default.
- W1660287306 hasConcept C19499675 @default.
- W1660287306 hasConcept C24890656 @default.
- W1660287306 hasConcept C2524010 @default.
- W1660287306 hasConcept C2781204021 @default.
- W1660287306 hasConcept C2834757 @default.
- W1660287306 hasConcept C33923547 @default.
- W1660287306 hasConcept C41008148 @default.
- W1660287306 hasConcept C51329190 @default.
- W1660287306 hasConcept C59902600 @default.
- W1660287306 hasConcept C76155785 @default.
- W1660287306 hasConceptScore W1660287306C105795698 @default.
- W1660287306 hasConceptScore W1660287306C112680207 @default.
- W1660287306 hasConceptScore W1660287306C114614502 @default.
- W1660287306 hasConceptScore W1660287306C121332964 @default.
- W1660287306 hasConceptScore W1660287306C121864883 @default.
- W1660287306 hasConceptScore W1660287306C126042441 @default.
- W1660287306 hasConceptScore W1660287306C134306372 @default.
- W1660287306 hasConceptScore W1660287306C151376022 @default.
- W1660287306 hasConceptScore W1660287306C190694206 @default.
- W1660287306 hasConceptScore W1660287306C19499675 @default.
- W1660287306 hasConceptScore W1660287306C24890656 @default.
- W1660287306 hasConceptScore W1660287306C2524010 @default.
- W1660287306 hasConceptScore W1660287306C2781204021 @default.
- W1660287306 hasConceptScore W1660287306C2834757 @default.
- W1660287306 hasConceptScore W1660287306C33923547 @default.
- W1660287306 hasConceptScore W1660287306C41008148 @default.
- W1660287306 hasConceptScore W1660287306C51329190 @default.
- W1660287306 hasConceptScore W1660287306C59902600 @default.
- W1660287306 hasConceptScore W1660287306C76155785 @default.
- W1660287306 hasLocation W16602873061 @default.
- W1660287306 hasOpenAccess W1660287306 @default.
- W1660287306 hasPrimaryLocation W16602873061 @default.
- W1660287306 hasRelatedWork W1566994762 @default.
- W1660287306 hasRelatedWork W1666956724 @default.
- W1660287306 hasRelatedWork W1969595548 @default.
- W1660287306 hasRelatedWork W1976597699 @default.
- W1660287306 hasRelatedWork W1999653689 @default.
- W1660287306 hasRelatedWork W2001429699 @default.
- W1660287306 hasRelatedWork W2049323024 @default.
- W1660287306 hasRelatedWork W2057864780 @default.
- W1660287306 hasRelatedWork W2062498867 @default.
- W1660287306 hasRelatedWork W2062920711 @default.
- W1660287306 hasRelatedWork W2062950961 @default.
- W1660287306 hasRelatedWork W2069667540 @default.
- W1660287306 hasRelatedWork W2071576623 @default.