Matches in SemOpenAlex for { <https://semopenalex.org/work/W16604872> ?p ?o ?g. }
- W16604872 endingPage "111" @default.
- W16604872 startingPage "73" @default.
- W16604872 abstract "Nanoscale semiconductor particles in which carrier motion is restricted in all three dimensions are often referred to as semiconductor quantum dots (QDs). While the crystalline structure of the bulk solid is maintained in QDs, the three-dimensional (3D) quantum confinement imparted by the nanoscale size causes the bulk energy bands to collapse into discrete, atomic-like levels that exhibit strong size dependence.1,2 One of the approaches to fabricating sub-10 nm semiconductor nanoparticles is through chemical synthesis. Chemically synthesized QDs are also called nanocrystals or nanocrystal QDs. Synthetic methods are particularly well developed for QDs of II–VI semiconductors. The two principle chemical routes for fabrication of these QDs are high-temperature precipitation in molten glasses3,4 and colloidal synthesis using, e.g., organometallic reactions.5 Glass samples provide rigidity and environmental stability; however, they have a broad QD size distribution (typically greater than 20%) and a large number of surface defects. A much higher level of synthetic flexibility and control is provided by colloidal QDs that can be chemically manipulated in a variety of ways including size-selective precipitation5 (resulting in less than 5% size variations), surface modification by exchange of the passivation layer,6,7 formation of layered core-shell heterostructures,8,9 immobilization in sol-gel10 and polymer11 matrices, and self-assembly into 3D superlattices.12,13 KeywordsTransient AbsorptionAmplify Spontaneous EmissionHole StateAuger RecombinationOptical GainThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves." @default.
- W16604872 created "2016-06-24" @default.
- W16604872 creator A5075570325 @default.
- W16604872 date "2003-01-01" @default.
- W16604872 modified "2023-09-27" @default.
- W16604872 title "Carrier dynamics, optical nonlinearities, and optical gain in nanocrystal quantum dots" @default.
- W16604872 cites W1539216443 @default.
- W16604872 cites W1967125278 @default.
- W16604872 cites W1970628482 @default.
- W16604872 cites W1972875210 @default.
- W16604872 cites W1977417867 @default.
- W16604872 cites W1980527023 @default.
- W16604872 cites W1982564571 @default.
- W16604872 cites W1986047426 @default.
- W16604872 cites W1987763890 @default.
- W16604872 cites W1995854638 @default.
- W16604872 cites W1998682694 @default.
- W16604872 cites W2000372728 @default.
- W16604872 cites W2004175611 @default.
- W16604872 cites W2004296840 @default.
- W16604872 cites W2004567430 @default.
- W16604872 cites W2008475069 @default.
- W16604872 cites W2011268317 @default.
- W16604872 cites W2012118155 @default.
- W16604872 cites W2012994549 @default.
- W16604872 cites W2015160114 @default.
- W16604872 cites W2018630756 @default.
- W16604872 cites W2019638687 @default.
- W16604872 cites W2025669689 @default.
- W16604872 cites W2025781540 @default.
- W16604872 cites W2028489705 @default.
- W16604872 cites W2030390663 @default.
- W16604872 cites W2030903093 @default.
- W16604872 cites W2032237348 @default.
- W16604872 cites W2035385933 @default.
- W16604872 cites W2035448545 @default.
- W16604872 cites W2037186676 @default.
- W16604872 cites W2037812877 @default.
- W16604872 cites W2037907379 @default.
- W16604872 cites W2038237598 @default.
- W16604872 cites W2038980827 @default.
- W16604872 cites W2043388894 @default.
- W16604872 cites W2044271588 @default.
- W16604872 cites W2046261097 @default.
- W16604872 cites W2046777446 @default.
- W16604872 cites W2048790219 @default.
- W16604872 cites W2053867938 @default.
- W16604872 cites W2055069556 @default.
- W16604872 cites W2055442658 @default.
- W16604872 cites W2062485439 @default.
- W16604872 cites W2066091879 @default.
- W16604872 cites W2072006205 @default.
- W16604872 cites W2073470705 @default.
- W16604872 cites W2074205201 @default.
- W16604872 cites W2074943171 @default.
- W16604872 cites W2075539838 @default.
- W16604872 cites W2078197560 @default.
- W16604872 cites W2083446374 @default.
- W16604872 cites W2086465411 @default.
- W16604872 cites W2089637698 @default.
- W16604872 cites W2089729461 @default.
- W16604872 cites W2089772503 @default.
- W16604872 cites W2093065511 @default.
- W16604872 cites W2094070753 @default.
- W16604872 cites W2094437628 @default.
- W16604872 cites W2158848123 @default.
- W16604872 cites W2168172744 @default.
- W16604872 cites W225669340 @default.
- W16604872 cites W319221740 @default.
- W16604872 doi "https://doi.org/10.1007/978-1-4757-3677-9_3" @default.
- W16604872 hasPublicationYear "2003" @default.
- W16604872 type Work @default.
- W16604872 sameAs 16604872 @default.
- W16604872 citedByCount "0" @default.
- W16604872 crossrefType "book-chapter" @default.
- W16604872 hasAuthorship W16604872A5075570325 @default.
- W16604872 hasConcept C108225325 @default.
- W16604872 hasConcept C124657808 @default.
- W16604872 hasConcept C147789679 @default.
- W16604872 hasConcept C155672457 @default.
- W16604872 hasConcept C171250308 @default.
- W16604872 hasConcept C175854130 @default.
- W16604872 hasConcept C185592680 @default.
- W16604872 hasConcept C192562407 @default.
- W16604872 hasConcept C2779227376 @default.
- W16604872 hasConcept C33574316 @default.
- W16604872 hasConcept C45206210 @default.
- W16604872 hasConcept C49040817 @default.
- W16604872 hasConcept C59789625 @default.
- W16604872 hasConcept C79794668 @default.
- W16604872 hasConcept C85080765 @default.
- W16604872 hasConceptScore W16604872C108225325 @default.
- W16604872 hasConceptScore W16604872C124657808 @default.
- W16604872 hasConceptScore W16604872C147789679 @default.
- W16604872 hasConceptScore W16604872C155672457 @default.
- W16604872 hasConceptScore W16604872C171250308 @default.
- W16604872 hasConceptScore W16604872C175854130 @default.
- W16604872 hasConceptScore W16604872C185592680 @default.