Matches in SemOpenAlex for { <https://semopenalex.org/work/W1661520475> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1661520475 endingPage "547" @default.
- W1661520475 startingPage "542" @default.
- W1661520475 abstract "Nanofluids are tailored suspensions of nanoparticles in a suitable base fluid. The discovery of nanofluids by Stephen choi opened a new heat transfer mechanism. Since then several research has taken place to explore thermal, electrical and magnetic property of nanofluids. Nanofluids showed enhanced electrical and thermal conductivities. The nanofluids are also proved as a potential candidate for direct absorption solar collectors (DASC). The present work investigates the effect of nanoparticle volume fraction and the associated optical intensity attenuation with a semiconductor laser diode of wavelength 670 nm. Nanoparticles of Titanium dioxide (TiO 2 ) and Carbon doped Titanium dioxide (C-TiO 2 ) are prepared by sol gel and characterized by powder XRD, SEM and UV. Since carbon is a good absorption material, TiO 2 are doped with carbon (C-TiO 2 ) to increase the absorption of incident radiation. Nanoparticles of TiO 2 and C-TiO 2 with two weight fractions such as 0.04 and 0.08 are dispersed in water and ethylene glycol to obtain TiO 2 and C-TiO 2 nanofluids. The nanofluids are investigated for their sedimentation time. Stability of TiO 2 nanofluid is nine times more than C-TiO 2 nanofluid but C-TiO 2 nanofluid are found to be efficient absorbers than TiO 2 nanofluid. A low volume fraction of C-TiO 2 nanofluid can ensure high stability, low pumping power and good absorption for a DASC. Keywords- : Nanofluid, TiO 2 C-TiO 2, optical absorption, Laser.DASC 1. Introduction Increasing consumption and growing demands of electrical appliances across the globe have posed a threat on the non renewable energy resources and has made us exploit the maximum of renewable energy resources, in which solar energy is the ultimate choice. Solar energy has been investigated for photovoltaic and thermal applications (Duffie, 1980) [1]. A major thrust in materials development is to identify new materials in order to increase the efficiency of solar cells. Materials with ultra fine grain size and nanomaterials have provided an opportunity to tune the band gap and absorption of the existing solar energy. Conventional solar cells transfer the heat from the flat plate to the working fluid and it suffers from the large heat loss. The concept of direct absorption solar collectors in which working fluid acts as absorber and carrier of heat started replacing the conventional solar cells (Otanicar TP,2009) [2]. Since thermal conductivity of pure liquids are extremely less than solid particles, suspension of microparticles gained prominence. But micro-colloidal suspensions has drawbacks like abrasion and sedimentation. Nanofluids were substituted by Robert Taylor (2009) to overcome the above problems [3].The term Nanofluid was coined by Stephen Choi in 1995.[4] Nanofluids are suspensions of nanosized solid particles (1-100nm) in suitable base fluids. Since 1995, nanofluids have been explored as a heat transfer fluid and the best results have been reported by Eastman and Stephen Choi in ( 2001). In the past five years nanofluids have been also explored for their electrical (Suvankar Ganguly 2009)[5] and magnetic properties( John Philip,2009).[6] Nanofluids can be prepared by two ways, single step method (H Zhu 2004 )[7] or two step method (Eastman 1997) [8]. Single step method is based on simultaneous synthesis of nanoparticle and nanofluid and two step methods involve; the synthesis of nanoparticles in the first step followed by dispersion in a suitable base fluid in the second step. The success of nanofluid for DASC depends on suitable choice of base fluid and nanoparticles. The best nanofluids have high stability, high absorption of sun light and minimum abrasion. In the present work an attempt has been made to identify the best absorption nanofluid." @default.
- W1661520475 created "2016-06-24" @default.
- W1661520475 creator A5028397016 @default.
- W1661520475 date "2015-06-30" @default.
- W1661520475 modified "2023-10-01" @default.
- W1661520475 title "Energy Harvesting Through Optical Properties of TiO2 and C- TiO2 Nanofluid for Direct Absorption Solar Collectors" @default.
- W1661520475 cites W1969590914 @default.
- W1661520475 cites W1972067347 @default.
- W1661520475 cites W1981064594 @default.
- W1661520475 cites W1988943737 @default.
- W1661520475 cites W2006088626 @default.
- W1661520475 cites W2034685966 @default.
- W1661520475 cites W2313742386 @default.
- W1661520475 cites W3016164285 @default.
- W1661520475 cites W2411750372 @default.
- W1661520475 doi "https://doi.org/10.20508/ijrer.21815" @default.
- W1661520475 hasPublicationYear "2015" @default.
- W1661520475 type Work @default.
- W1661520475 sameAs 1661520475 @default.
- W1661520475 citedByCount "0" @default.
- W1661520475 crossrefType "journal-article" @default.
- W1661520475 hasAuthorship W1661520475A5028397016 @default.
- W1661520475 hasConcept C125287762 @default.
- W1661520475 hasConcept C127413603 @default.
- W1661520475 hasConcept C155672457 @default.
- W1661520475 hasConcept C159985019 @default.
- W1661520475 hasConcept C161790260 @default.
- W1661520475 hasConcept C171250308 @default.
- W1661520475 hasConcept C178790620 @default.
- W1661520475 hasConcept C185592680 @default.
- W1661520475 hasConcept C192562407 @default.
- W1661520475 hasConcept C21946209 @default.
- W1661520475 hasConcept C2777402863 @default.
- W1661520475 hasConcept C2777516009 @default.
- W1661520475 hasConcept C2777593239 @default.
- W1661520475 hasConcept C42360764 @default.
- W1661520475 hasConcept C65165184 @default.
- W1661520475 hasConceptScore W1661520475C125287762 @default.
- W1661520475 hasConceptScore W1661520475C127413603 @default.
- W1661520475 hasConceptScore W1661520475C155672457 @default.
- W1661520475 hasConceptScore W1661520475C159985019 @default.
- W1661520475 hasConceptScore W1661520475C161790260 @default.
- W1661520475 hasConceptScore W1661520475C171250308 @default.
- W1661520475 hasConceptScore W1661520475C178790620 @default.
- W1661520475 hasConceptScore W1661520475C185592680 @default.
- W1661520475 hasConceptScore W1661520475C192562407 @default.
- W1661520475 hasConceptScore W1661520475C21946209 @default.
- W1661520475 hasConceptScore W1661520475C2777402863 @default.
- W1661520475 hasConceptScore W1661520475C2777516009 @default.
- W1661520475 hasConceptScore W1661520475C2777593239 @default.
- W1661520475 hasConceptScore W1661520475C42360764 @default.
- W1661520475 hasConceptScore W1661520475C65165184 @default.
- W1661520475 hasIssue "2" @default.
- W1661520475 hasLocation W16615204751 @default.
- W1661520475 hasOpenAccess W1661520475 @default.
- W1661520475 hasPrimaryLocation W16615204751 @default.
- W1661520475 hasRelatedWork W1150172580 @default.
- W1661520475 hasRelatedWork W2011951145 @default.
- W1661520475 hasRelatedWork W2063044263 @default.
- W1661520475 hasRelatedWork W2136977860 @default.
- W1661520475 hasRelatedWork W2229034319 @default.
- W1661520475 hasRelatedWork W2315560238 @default.
- W1661520475 hasRelatedWork W2322699768 @default.
- W1661520475 hasRelatedWork W2336480824 @default.
- W1661520475 hasRelatedWork W2509357655 @default.
- W1661520475 hasRelatedWork W2520939985 @default.
- W1661520475 hasRelatedWork W2581835826 @default.
- W1661520475 hasRelatedWork W2587456034 @default.
- W1661520475 hasRelatedWork W2779913268 @default.
- W1661520475 hasRelatedWork W2885941586 @default.
- W1661520475 hasRelatedWork W2933722254 @default.
- W1661520475 hasRelatedWork W2990872277 @default.
- W1661520475 hasRelatedWork W3089138771 @default.
- W1661520475 hasRelatedWork W3187278784 @default.
- W1661520475 hasRelatedWork W3208048564 @default.
- W1661520475 hasRelatedWork W2621726361 @default.
- W1661520475 hasVolume "5" @default.
- W1661520475 isParatext "false" @default.
- W1661520475 isRetracted "false" @default.
- W1661520475 magId "1661520475" @default.
- W1661520475 workType "article" @default.