Matches in SemOpenAlex for { <https://semopenalex.org/work/W1663015004> ?p ?o ?g. }
- W1663015004 abstract "The aim of this work is to understand how infectious diseases spread through human populations. Attention is given to those diseases which follow the Susceptible–Infective–Susceptible (SIS) pattern. When modelling diseases spread in a human population, it is important to consider the social and spatial structure of the population. Humans usually live in groups such as work places, households, towns and cities. However, an individual’s membership of a particular group is not fixed. Rather, it changes over time. This structure determines two paths for a disease to spread through the population. Disease is spread between individuals in the same group by contact between infected and susceptible individuals, and is spread from one group to another by the migration of infected individuals. This type of population structure can be modelled by a metapopulation network. I develop a continuous–time Markov chain (CTMC) model that describes the spread of an SIS epidemic in a metapopulation network. I establish an ordinary differential equations (ODE) and a Gaussian diffusion analogue of the stochastic process by applying, respectively, the theory of differential equation approximations for Markov chains, and the theory of density dependent Markov chains. I use the ODE model to derive analytic expressions for various epidemiological quantities of interest. In particular, I obtain expressions for two threshold quantities; the basic reproduction number, and a quantity called T0 which is greater than the basic reproduction number. If the basic reproduction number is above 1, then the disease persists and if the basic reproduction number is below 1, then the disease–free equilibrium (DFE) is locally attractive. However, if T0 is less than or equal to 1, then the DFE is globally attractive. Using the theory of cooperative differential equations and the theory of asymptotically autonomous differential equations, I show the existence and global stability of a unique endemic equilibrium (EE) and the global stability of the DFE in terms of the basic reproduction number, provided that the migration rates of susceptible and infected individuals are equal. Numerical examples indicate that a unique stable EE exists when the condition on the migration rates is relaxed. The approximating Gaussian diffusion shows that the distribution of the population at the endemic level has an approximate multivariate normal distribution whose mean is centered at the endemic equilibrium of the ODE model. The results of this study can serve as a basic framework on how to formulate and analyse a more realistic stochastic model for the spread of an SIS epidemic in a metapopulation which accounts for births, deaths, age, risk, and level of infectivities. Assuming that the model presented here accurately describes the spread of an SIS epidemic in a metapopulation, another question which I address is how to control the spread of the disease. Since most control strategies such as vaccination, treatment and public awareness require a high cost for their implementation, I aim to provide a strategy whose cost is minimal and which only requires control of the migration pattern. Using convex optimisation theory, I obtain an exact analytic expression for the optimal migration pattern for susceptible individuals which minimises the basic reproduction number and the initial growth rate of the epidemic, provided that the migration rate of infected individuals follow a specific pattern. It turns out that the optimal migration pattern for susceptible individuals can be satisfied if the migration rates between any two patches (or groups) are symmetric. The control strategy obtained here can be applied to reduce the early growth rate of a disease in conjunction with or in the absence of another prevention measure." @default.
- W1663015004 created "2016-06-24" @default.
- W1663015004 creator A5085314953 @default.
- W1663015004 date "2015-08-31" @default.
- W1663015004 modified "2023-09-24" @default.
- W1663015004 title "A model for the spread of an SIS epidemic in a human population" @default.
- W1663015004 cites W114870970 @default.
- W1663015004 cites W1523939479 @default.
- W1663015004 cites W1557486077 @default.
- W1663015004 cites W1575154287 @default.
- W1663015004 cites W1591710988 @default.
- W1663015004 cites W1606697907 @default.
- W1663015004 cites W1608691223 @default.
- W1663015004 cites W1654578212 @default.
- W1663015004 cites W1832313404 @default.
- W1663015004 cites W1965499304 @default.
- W1663015004 cites W1973281353 @default.
- W1663015004 cites W1973603426 @default.
- W1663015004 cites W1976625337 @default.
- W1663015004 cites W1976988610 @default.
- W1663015004 cites W1978018742 @default.
- W1663015004 cites W1979241140 @default.
- W1663015004 cites W1981903873 @default.
- W1663015004 cites W1982251560 @default.
- W1663015004 cites W1982300822 @default.
- W1663015004 cites W1983423321 @default.
- W1663015004 cites W1984841045 @default.
- W1663015004 cites W1985655812 @default.
- W1663015004 cites W1987415288 @default.
- W1663015004 cites W1987881677 @default.
- W1663015004 cites W1988412343 @default.
- W1663015004 cites W1993213860 @default.
- W1663015004 cites W1995622600 @default.
- W1663015004 cites W1997698024 @default.
- W1663015004 cites W2001842053 @default.
- W1663015004 cites W2001997836 @default.
- W1663015004 cites W2002117208 @default.
- W1663015004 cites W2005711104 @default.
- W1663015004 cites W2006423444 @default.
- W1663015004 cites W2008344748 @default.
- W1663015004 cites W2012967905 @default.
- W1663015004 cites W2014249991 @default.
- W1663015004 cites W2014312433 @default.
- W1663015004 cites W2015918473 @default.
- W1663015004 cites W2016469924 @default.
- W1663015004 cites W2016609094 @default.
- W1663015004 cites W2016674662 @default.
- W1663015004 cites W2017558991 @default.
- W1663015004 cites W2020319074 @default.
- W1663015004 cites W2023361568 @default.
- W1663015004 cites W2028257630 @default.
- W1663015004 cites W2032043956 @default.
- W1663015004 cites W2032325033 @default.
- W1663015004 cites W2034785206 @default.
- W1663015004 cites W2041572706 @default.
- W1663015004 cites W2042848153 @default.
- W1663015004 cites W2043890595 @default.
- W1663015004 cites W2051314659 @default.
- W1663015004 cites W2052801716 @default.
- W1663015004 cites W2053491613 @default.
- W1663015004 cites W2053511879 @default.
- W1663015004 cites W2054328928 @default.
- W1663015004 cites W2056284729 @default.
- W1663015004 cites W2056799325 @default.
- W1663015004 cites W2057166175 @default.
- W1663015004 cites W2060157454 @default.
- W1663015004 cites W2061050995 @default.
- W1663015004 cites W2062259223 @default.
- W1663015004 cites W2068169102 @default.
- W1663015004 cites W2069977841 @default.
- W1663015004 cites W2073487077 @default.
- W1663015004 cites W207440351 @default.
- W1663015004 cites W2074651396 @default.
- W1663015004 cites W2075892055 @default.
- W1663015004 cites W2078426401 @default.
- W1663015004 cites W2080786993 @default.
- W1663015004 cites W2081017921 @default.
- W1663015004 cites W2082404215 @default.
- W1663015004 cites W2084933402 @default.
- W1663015004 cites W2085630117 @default.
- W1663015004 cites W2087632492 @default.
- W1663015004 cites W2088282337 @default.
- W1663015004 cites W2089731941 @default.
- W1663015004 cites W2095196562 @default.
- W1663015004 cites W2100776472 @default.
- W1663015004 cites W2104595316 @default.
- W1663015004 cites W2111564761 @default.
- W1663015004 cites W2113797309 @default.
- W1663015004 cites W2118541201 @default.
- W1663015004 cites W2118868090 @default.
- W1663015004 cites W2119560885 @default.
- W1663015004 cites W2123252019 @default.
- W1663015004 cites W2133072591 @default.
- W1663015004 cites W2140255713 @default.
- W1663015004 cites W2144301074 @default.
- W1663015004 cites W2145108480 @default.
- W1663015004 cites W2146400592 @default.
- W1663015004 cites W2148301044 @default.
- W1663015004 cites W2161499589 @default.
- W1663015004 cites W2161728228 @default.