Matches in SemOpenAlex for { <https://semopenalex.org/work/W166397639> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W166397639 abstract "An ongoing challenge in cryptography is to find groups in which the DLP is computationally infeasible, that is, for which the best known attack is exponential in log(N). Such a group can be used as the setting for many cryptographic protocols, from Diffie-Hellman key exchange to El Gamal encryption ([14], 159). The most prominent example, first proposed in 1985, is a subgroup of points of an elliptic curve E over a finite field Fq of prime orderN . ForN ≈ 1080, with current computing power, it is infeasible to solve the elliptic curve DLP, or ECDLP; in other words, it is not possible to determine n. However, in the early 1990’s, supersingular elliptic curves, those curves over fields of positive characteristic which have no p-torsion, were discovered to be susceptible to the MOV attack, which used the Weil pairing to reduce the ECDLP to the DLP in Fq , the multiplicative group of the finite field, where subexponential attacks such as the index calculus are possible ([14], 144).Thus, for cryptographic purposes, it is necessary to restrict to ordinary elliptic curves, where E[p](K) ' Z/pZ. However, certain subgroups of ordinary elliptic curves, those N = p, are even more insecure than supersingular curves. The ECDLP in the p-torsion subgroup of E(Fq) can be reduced to the DLP in Fq , which is easily solved by the Euclidean algorithm. For q = p, these curves are known as trace one or anomalous curves. The purpose of this paper is to describe the distinct approaches to solving the DLP in the p-torsion subgroup of elliptic curves, as well the related theoretical framework. Throughout, we letE denote an ordinary elliptic curve E over Fq with characteristic p 6= 2, 3 and we assume E[p] ' Z/pZ ⊂ E(Fq). The motivating problem is to explicitly determine a “logarithm” for the group of points E[p], that is, a homomorphism E[p]→ Fp . In Section 2, we describe an algorithm due to Semaev [8], based on the divisor group of the elliptic curve. In Section 3, we describe a theoretical approach based on descent by p-isogeny. We also discuss its relation to the classical Weierstrass elliptic functions and the Semaev algorithm. In Section 4, we describe another algorithm due to Smart [10], based on the p-adic elliptic logarithm." @default.
- W166397639 created "2016-06-24" @default.
- W166397639 creator A5047851103 @default.
- W166397639 date "2007-01-01" @default.
- W166397639 modified "2023-09-27" @default.
- W166397639 title "The Discrete Logarithm Problem on the p-torsion Subgroup of Elliptic Curves" @default.
- W166397639 cites W1486898453 @default.
- W166397639 cites W1547407391 @default.
- W166397639 cites W1979485530 @default.
- W166397639 cites W1990220158 @default.
- W166397639 cites W203781638 @default.
- W166397639 cites W2039596581 @default.
- W166397639 cites W2046569422 @default.
- W166397639 cites W2133877376 @default.
- W166397639 cites W889796821 @default.
- W166397639 hasPublicationYear "2007" @default.
- W166397639 type Work @default.
- W166397639 sameAs 166397639 @default.
- W166397639 citedByCount "0" @default.
- W166397639 crossrefType "journal-article" @default.
- W166397639 hasAuthorship W166397639A5047851103 @default.
- W166397639 hasConcept C104993295 @default.
- W166397639 hasConcept C111919701 @default.
- W166397639 hasConcept C117121985 @default.
- W166397639 hasConcept C118615104 @default.
- W166397639 hasConcept C121444067 @default.
- W166397639 hasConcept C131182338 @default.
- W166397639 hasConcept C134306372 @default.
- W166397639 hasConcept C148730421 @default.
- W166397639 hasConcept C157567686 @default.
- W166397639 hasConcept C167615521 @default.
- W166397639 hasConcept C173259116 @default.
- W166397639 hasConcept C179603306 @default.
- W166397639 hasConcept C197875053 @default.
- W166397639 hasConcept C202444582 @default.
- W166397639 hasConcept C203062551 @default.
- W166397639 hasConcept C33923547 @default.
- W166397639 hasConcept C41008148 @default.
- W166397639 hasConcept C42747912 @default.
- W166397639 hasConcept C68782407 @default.
- W166397639 hasConcept C77926391 @default.
- W166397639 hasConcept C79993320 @default.
- W166397639 hasConcept C92727272 @default.
- W166397639 hasConcept C92788228 @default.
- W166397639 hasConceptScore W166397639C104993295 @default.
- W166397639 hasConceptScore W166397639C111919701 @default.
- W166397639 hasConceptScore W166397639C117121985 @default.
- W166397639 hasConceptScore W166397639C118615104 @default.
- W166397639 hasConceptScore W166397639C121444067 @default.
- W166397639 hasConceptScore W166397639C131182338 @default.
- W166397639 hasConceptScore W166397639C134306372 @default.
- W166397639 hasConceptScore W166397639C148730421 @default.
- W166397639 hasConceptScore W166397639C157567686 @default.
- W166397639 hasConceptScore W166397639C167615521 @default.
- W166397639 hasConceptScore W166397639C173259116 @default.
- W166397639 hasConceptScore W166397639C179603306 @default.
- W166397639 hasConceptScore W166397639C197875053 @default.
- W166397639 hasConceptScore W166397639C202444582 @default.
- W166397639 hasConceptScore W166397639C203062551 @default.
- W166397639 hasConceptScore W166397639C33923547 @default.
- W166397639 hasConceptScore W166397639C41008148 @default.
- W166397639 hasConceptScore W166397639C42747912 @default.
- W166397639 hasConceptScore W166397639C68782407 @default.
- W166397639 hasConceptScore W166397639C77926391 @default.
- W166397639 hasConceptScore W166397639C79993320 @default.
- W166397639 hasConceptScore W166397639C92727272 @default.
- W166397639 hasConceptScore W166397639C92788228 @default.
- W166397639 hasLocation W1663976391 @default.
- W166397639 hasOpenAccess W166397639 @default.
- W166397639 hasPrimaryLocation W1663976391 @default.
- W166397639 hasRelatedWork W1483451858 @default.
- W166397639 hasRelatedWork W1529595697 @default.
- W166397639 hasRelatedWork W1587701049 @default.
- W166397639 hasRelatedWork W1851253658 @default.
- W166397639 hasRelatedWork W1972124569 @default.
- W166397639 hasRelatedWork W2000898774 @default.
- W166397639 hasRelatedWork W2051494591 @default.
- W166397639 hasRelatedWork W2057562740 @default.
- W166397639 hasRelatedWork W2103861171 @default.
- W166397639 hasRelatedWork W2111310412 @default.
- W166397639 hasRelatedWork W2112566740 @default.
- W166397639 hasRelatedWork W2125844942 @default.
- W166397639 hasRelatedWork W2158553589 @default.
- W166397639 hasRelatedWork W2391497076 @default.
- W166397639 hasRelatedWork W2726915445 @default.
- W166397639 hasRelatedWork W2950233671 @default.
- W166397639 hasRelatedWork W3028795424 @default.
- W166397639 hasRelatedWork W3101994345 @default.
- W166397639 hasRelatedWork W3143250950 @default.
- W166397639 hasRelatedWork W954558382 @default.
- W166397639 isParatext "false" @default.
- W166397639 isRetracted "false" @default.
- W166397639 magId "166397639" @default.
- W166397639 workType "article" @default.