Matches in SemOpenAlex for { <https://semopenalex.org/work/W166560619> ?p ?o ?g. }
- W166560619 endingPage "443" @default.
- W166560619 startingPage "427" @default.
- W166560619 abstract "The black-box field (BBF) extraction problem is, for a given field $mathbb{F}$ , to determine a secret field element hidden in a black-box which allows to add and multiply values in $mathbb{F}$ in the box and which reports only equalities of elements in the box. This problem is of cryptographic interest for two reasons. First, for $mathbb{F}=mathbb{F}_p$ it corresponds to the generic reduction of the discrete logarithm problem to the computational Diffie-Hellman problem in a group of prime order p. Second, an efficient solution to the BBF extraction problem proves the inexistence of field-homomorphic one-way permutations whose realization is an interesting open problem in algebra-based cryptography. BBFs are also of independent interest in computational algebra. In the previous literature BBFs had only been considered for the prime field case. In this paper we consider a generalization of the extraction problem to BBFs that are extension fields. More precisely we discuss the representation problem defined as follows: For given generators g 1,...,g d algebraically generating a BBF and an additional element x, all hidden in a black-box, express x algebraically in terms of g 1,...,g d . We give an efficient algorithm for this representation problem and related problems for fields with small characteristic (e.g. $mathbb{F}=mathbb{F}_{2^n}$ for some n). We also consider extension fields of large characteristic and show how to reduce the representation problem to the extraction problem for the underlying prime field. These results imply the inexistence of field-homomorphic (as opposed to only group-homomorphic, like RSA) one-way permutations for fields of small characteristic." @default.
- W166560619 created "2016-06-24" @default.
- W166560619 creator A5058570984 @default.
- W166560619 creator A5064085132 @default.
- W166560619 date "2007-11-05" @default.
- W166560619 modified "2023-09-25" @default.
- W166560619 title "Black-Box Extension Fields and the Inexistence of Field-Homomorphic One-Way Permutations" @default.
- W166560619 cites W1490394993 @default.
- W166560619 cites W1491251281 @default.
- W166560619 cites W1793111075 @default.
- W166560619 cites W1963716248 @default.
- W166560619 cites W1978872857 @default.
- W166560619 cites W2000103501 @default.
- W166560619 cites W2137180374 @default.
- W166560619 cites W2156186849 @default.
- W166560619 cites W2164988972 @default.
- W166560619 cites W4214951289 @default.
- W166560619 doi "https://doi.org/10.1007/978-3-540-76900-2_26" @default.
- W166560619 hasPublicationYear "2007" @default.
- W166560619 type Work @default.
- W166560619 sameAs 166560619 @default.
- W166560619 citedByCount "14" @default.
- W166560619 countsByYear W1665606192012 @default.
- W166560619 countsByYear W1665606192016 @default.
- W166560619 countsByYear W1665606192019 @default.
- W166560619 countsByYear W1665606192020 @default.
- W166560619 countsByYear W1665606192021 @default.
- W166560619 countsByYear W1665606192023 @default.
- W166560619 crossrefType "book-chapter" @default.
- W166560619 hasAuthorship W166560619A5058570984 @default.
- W166560619 hasAuthorship W166560619A5064085132 @default.
- W166560619 hasBestOaLocation W1665606191 @default.
- W166560619 hasConcept C105795698 @default.
- W166560619 hasConcept C111919701 @default.
- W166560619 hasConcept C114614502 @default.
- W166560619 hasConcept C118615104 @default.
- W166560619 hasConcept C134306372 @default.
- W166560619 hasConcept C136119220 @default.
- W166560619 hasConcept C148730421 @default.
- W166560619 hasConcept C154945302 @default.
- W166560619 hasConcept C158338273 @default.
- W166560619 hasConcept C173259116 @default.
- W166560619 hasConcept C177148314 @default.
- W166560619 hasConcept C17744445 @default.
- W166560619 hasConcept C184992742 @default.
- W166560619 hasConcept C199360897 @default.
- W166560619 hasConcept C199539241 @default.
- W166560619 hasConcept C202444582 @default.
- W166560619 hasConcept C203062551 @default.
- W166560619 hasConcept C203701370 @default.
- W166560619 hasConcept C2776359362 @default.
- W166560619 hasConcept C2778029271 @default.
- W166560619 hasConcept C2781089630 @default.
- W166560619 hasConcept C33923547 @default.
- W166560619 hasConcept C41008148 @default.
- W166560619 hasConcept C94625758 @default.
- W166560619 hasConcept C94966114 @default.
- W166560619 hasConcept C9652623 @default.
- W166560619 hasConceptScore W166560619C105795698 @default.
- W166560619 hasConceptScore W166560619C111919701 @default.
- W166560619 hasConceptScore W166560619C114614502 @default.
- W166560619 hasConceptScore W166560619C118615104 @default.
- W166560619 hasConceptScore W166560619C134306372 @default.
- W166560619 hasConceptScore W166560619C136119220 @default.
- W166560619 hasConceptScore W166560619C148730421 @default.
- W166560619 hasConceptScore W166560619C154945302 @default.
- W166560619 hasConceptScore W166560619C158338273 @default.
- W166560619 hasConceptScore W166560619C173259116 @default.
- W166560619 hasConceptScore W166560619C177148314 @default.
- W166560619 hasConceptScore W166560619C17744445 @default.
- W166560619 hasConceptScore W166560619C184992742 @default.
- W166560619 hasConceptScore W166560619C199360897 @default.
- W166560619 hasConceptScore W166560619C199539241 @default.
- W166560619 hasConceptScore W166560619C202444582 @default.
- W166560619 hasConceptScore W166560619C203062551 @default.
- W166560619 hasConceptScore W166560619C203701370 @default.
- W166560619 hasConceptScore W166560619C2776359362 @default.
- W166560619 hasConceptScore W166560619C2778029271 @default.
- W166560619 hasConceptScore W166560619C2781089630 @default.
- W166560619 hasConceptScore W166560619C33923547 @default.
- W166560619 hasConceptScore W166560619C41008148 @default.
- W166560619 hasConceptScore W166560619C94625758 @default.
- W166560619 hasConceptScore W166560619C94966114 @default.
- W166560619 hasConceptScore W166560619C9652623 @default.
- W166560619 hasLocation W1665606191 @default.
- W166560619 hasOpenAccess W166560619 @default.
- W166560619 hasPrimaryLocation W1665606191 @default.
- W166560619 hasRelatedWork W166560619 @default.
- W166560619 hasRelatedWork W1997271576 @default.
- W166560619 hasRelatedWork W2032183060 @default.
- W166560619 hasRelatedWork W2039558577 @default.
- W166560619 hasRelatedWork W2090430831 @default.
- W166560619 hasRelatedWork W2098796185 @default.
- W166560619 hasRelatedWork W2315640511 @default.
- W166560619 hasRelatedWork W2404295594 @default.
- W166560619 hasRelatedWork W3101907825 @default.
- W166560619 hasRelatedWork W4251636188 @default.
- W166560619 isParatext "false" @default.