Matches in SemOpenAlex for { <https://semopenalex.org/work/W166615052> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W166615052 abstract "Increased competition in the process industries requires operation and better utilization of raw materials and energy. One strategy for achieving improved production is to use real-time optimization (RTO), based on measured disturbances and process measurements. The solution is usually implemented by updating setpoints to the control system which task is to keep the controlled variables at the setpoint. Thus, the selection of controlled variables integrates the optimization and the control layer.Selecting the right controlled variables can be of paramount importance. Many chemical processes are influenced by disturbances that are often not measured and where installing new measurements are not economically viable. Thus, finding controlled variables where the value is insensitive to disturbances could eliminate the need of estimating these disturbances online and would reduce the need of frequent setpoint updates. The use of feedback control introduces implementation errors. It is important to select controlled variables that are insensitive to implementation errors. The optimal implementation would be to use a dynamic optimizer which, based on full information of the disturbances and the plant outputs, calculates the inputs. In practice, control systems have a hierarchical structure, where different layers operate on different time scales. Thus, the selection of controlled variables (which links these layers together) is important.The ideal situation is to have self-optimizing controlled variables where operation remains near-optimal in presence of disturbances and implementation errors using constant setpoints. This work puts emphasis on methods for selecting such self-optimizing controlled variables. We base the selection of controlled variables on an economic measure of the operation. We assume that the setpoints are nominally optimal, and we propose the null space method for selecting controlled variables as a combination of measurements. The selection of the controlled variables is based on the sensitivity matrix from the disturbances to the measurements. This information can easily be provided by using experiments or a model of the plant. The main focus, is to find controlled variables that yield good self-optimizing properties with respect to disturbances. The method uses local information, however, several case studies have shown that the operation is near-optimal in a wider region of the disturbance space.To generalize the null space method, we propose a method for selecting measurements that minimizes the effect of implementation errors on the economic performance for the resulting control structure. Based on the derivation of the null space method, we propose a simple procedure for finding controlled variables using the null space method. The procedure is split in two: First, we select measurements that are insensitive to measurement error. Second, we combine these measurements to form the self-optimizing control structure.Further, we discuss how non-optimal nominal points affect the selection of controlled variables for self-optimizing control. We find that the selection of controlled variables is unaffected by non-optimal nominal points, and that the average increase in loss is independent of what we select to control.Another contribution is to provide several case studies where the null space method is compared with previously proposed methods for selecting controlled variables. The null space method is illustrated on a Petlyuk distillation column for separation of ternary mixtures. We find that the null space method yields a control structure with acceptable steady-state and dynamic performance. Other cases studied are an evaporator process and oil and gas production networks.Finally, we show that for the Petlyuk distillation column it is energetically to over-fractionate one of the products. This surprising result is discussed and expressions for the possible savings are derived." @default.
- W166615052 created "2016-06-24" @default.
- W166615052 creator A5069528741 @default.
- W166615052 date "2007-01-01" @default.
- W166615052 modified "2023-09-27" @default.
- W166615052 title "Dynamics of controlling measurements combinations" @default.
- W166615052 hasPublicationYear "2007" @default.
- W166615052 type Work @default.
- W166615052 sameAs 166615052 @default.
- W166615052 citedByCount "0" @default.
- W166615052 crossrefType "journal-article" @default.
- W166615052 hasAuthorship W166615052A5069528741 @default.
- W166615052 hasConcept C111919701 @default.
- W166615052 hasConcept C119857082 @default.
- W166615052 hasConcept C12302492 @default.
- W166615052 hasConcept C127413603 @default.
- W166615052 hasConcept C133731056 @default.
- W166615052 hasConcept C134306372 @default.
- W166615052 hasConcept C153240184 @default.
- W166615052 hasConcept C154945302 @default.
- W166615052 hasConcept C155386361 @default.
- W166615052 hasConcept C182365436 @default.
- W166615052 hasConcept C2775924081 @default.
- W166615052 hasConcept C33923547 @default.
- W166615052 hasConcept C41008148 @default.
- W166615052 hasConcept C47446073 @default.
- W166615052 hasConcept C98045186 @default.
- W166615052 hasConceptScore W166615052C111919701 @default.
- W166615052 hasConceptScore W166615052C119857082 @default.
- W166615052 hasConceptScore W166615052C12302492 @default.
- W166615052 hasConceptScore W166615052C127413603 @default.
- W166615052 hasConceptScore W166615052C133731056 @default.
- W166615052 hasConceptScore W166615052C134306372 @default.
- W166615052 hasConceptScore W166615052C153240184 @default.
- W166615052 hasConceptScore W166615052C154945302 @default.
- W166615052 hasConceptScore W166615052C155386361 @default.
- W166615052 hasConceptScore W166615052C182365436 @default.
- W166615052 hasConceptScore W166615052C2775924081 @default.
- W166615052 hasConceptScore W166615052C33923547 @default.
- W166615052 hasConceptScore W166615052C41008148 @default.
- W166615052 hasConceptScore W166615052C47446073 @default.
- W166615052 hasConceptScore W166615052C98045186 @default.
- W166615052 hasLocation W1666150521 @default.
- W166615052 hasOpenAccess W166615052 @default.
- W166615052 hasPrimaryLocation W1666150521 @default.
- W166615052 hasRelatedWork W120943797 @default.
- W166615052 hasRelatedWork W1537545503 @default.
- W166615052 hasRelatedWork W1726015116 @default.
- W166615052 hasRelatedWork W2069317214 @default.
- W166615052 hasRelatedWork W2082385 @default.
- W166615052 hasRelatedWork W2172235328 @default.
- W166615052 hasRelatedWork W2344727505 @default.
- W166615052 hasRelatedWork W2366662900 @default.
- W166615052 hasRelatedWork W2583138310 @default.
- W166615052 hasRelatedWork W2609220673 @default.
- W166615052 hasRelatedWork W273544515 @default.
- W166615052 hasRelatedWork W2736551223 @default.
- W166615052 hasRelatedWork W2896076376 @default.
- W166615052 hasRelatedWork W2897366893 @default.
- W166615052 hasRelatedWork W2989689604 @default.
- W166615052 hasRelatedWork W3022935958 @default.
- W166615052 hasRelatedWork W31789220 @default.
- W166615052 hasRelatedWork W345998710 @default.
- W166615052 hasRelatedWork W60711185 @default.
- W166615052 hasRelatedWork W2184495069 @default.
- W166615052 isParatext "false" @default.
- W166615052 isRetracted "false" @default.
- W166615052 magId "166615052" @default.
- W166615052 workType "article" @default.