Matches in SemOpenAlex for { <https://semopenalex.org/work/W1666694983> ?p ?o ?g. }
- W1666694983 abstract "Large outliers break down linear and nonlinear regression models. Robust regression methods allow one to filter out the outliers when building a model. By replacing the traditional least squares criterion with the least trimmed squares criterion, in which half of data is treated as potential outliers, one can fit accurate regression models to strongly contaminated data. High-breakdown methods have become very well established in linear regression, but have started being applied for non-linear regression only recently. In this work, we examine the problem of fitting artificial neural networks to contaminated data using least trimmed squares criterion. We introduce a penalized least trimmed squares criterion which prevents unnecessary removal of valid data. Training of ANNs leads to a challenging non-smooth global optimization problem. We compare the efficiency of several derivative-free optimization methods in solving it, and show that our approach identifies the outliers correctly when ANNs are used for nonlinear regression." @default.
- W1666694983 created "2016-06-24" @default.
- W1666694983 creator A5011976667 @default.
- W1666694983 creator A5013103385 @default.
- W1666694983 creator A5048317892 @default.
- W1666694983 date "2011-10-02" @default.
- W1666694983 modified "2023-10-11" @default.
- W1666694983 title "Robust artificial neural networks and outlier detection. Technical report" @default.
- W1666694983 cites W111049624 @default.
- W1666694983 cites W1486587513 @default.
- W1666694983 cites W1490180010 @default.
- W1666694983 cites W149129625 @default.
- W1666694983 cites W1510857921 @default.
- W1666694983 cites W1531459436 @default.
- W1666694983 cites W1534675906 @default.
- W1666694983 cites W1540138104 @default.
- W1666694983 cites W1567207637 @default.
- W1666694983 cites W1964524778 @default.
- W1666694983 cites W1985612626 @default.
- W1666694983 cites W1986846175 @default.
- W1666694983 cites W1986948589 @default.
- W1666694983 cites W1993487917 @default.
- W1666694983 cites W1995596660 @default.
- W1666694983 cites W1997815969 @default.
- W1666694983 cites W2002608372 @default.
- W1666694983 cites W2003699104 @default.
- W1666694983 cites W2016043834 @default.
- W1666694983 cites W2020647418 @default.
- W1666694983 cites W2029888153 @default.
- W1666694983 cites W2033201034 @default.
- W1666694983 cites W2035088317 @default.
- W1666694983 cites W2039111546 @default.
- W1666694983 cites W2052090003 @default.
- W1666694983 cites W2057563377 @default.
- W1666694983 cites W2057830724 @default.
- W1666694983 cites W2064190272 @default.
- W1666694983 cites W2081808304 @default.
- W1666694983 cites W2083241629 @default.
- W1666694983 cites W2087642339 @default.
- W1666694983 cites W2088391832 @default.
- W1666694983 cites W2089707659 @default.
- W1666694983 cites W2095225664 @default.
- W1666694983 cites W2096220889 @default.
- W1666694983 cites W2112449769 @default.
- W1666694983 cites W2119547137 @default.
- W1666694983 cites W2129249398 @default.
- W1666694983 cites W2136159685 @default.
- W1666694983 cites W2137983211 @default.
- W1666694983 cites W2138130349 @default.
- W1666694983 cites W2141547648 @default.
- W1666694983 cites W2152701363 @default.
- W1666694983 cites W2152907901 @default.
- W1666694983 cites W2153845355 @default.
- W1666694983 cites W2155482699 @default.
- W1666694983 cites W2157486431 @default.
- W1666694983 cites W2162337155 @default.
- W1666694983 cites W2171074980 @default.
- W1666694983 cites W2171506994 @default.
- W1666694983 cites W3097169496 @default.
- W1666694983 cites W3146803896 @default.
- W1666694983 cites W51589798 @default.
- W1666694983 cites W581935970 @default.
- W1666694983 hasPublicationYear "2011" @default.
- W1666694983 type Work @default.
- W1666694983 sameAs 1666694983 @default.
- W1666694983 citedByCount "1" @default.
- W1666694983 countsByYear W16666949832018 @default.
- W1666694983 crossrefType "journal-article" @default.
- W1666694983 hasAuthorship W1666694983A5011976667 @default.
- W1666694983 hasAuthorship W1666694983A5013103385 @default.
- W1666694983 hasAuthorship W1666694983A5048317892 @default.
- W1666694983 hasBestOaLocation W16666949831 @default.
- W1666694983 hasConcept C105795698 @default.
- W1666694983 hasConcept C119857082 @default.
- W1666694983 hasConcept C152877465 @default.
- W1666694983 hasConcept C154945302 @default.
- W1666694983 hasConcept C185429906 @default.
- W1666694983 hasConcept C25294789 @default.
- W1666694983 hasConcept C33923547 @default.
- W1666694983 hasConcept C41008148 @default.
- W1666694983 hasConcept C46889948 @default.
- W1666694983 hasConcept C48921125 @default.
- W1666694983 hasConcept C50644808 @default.
- W1666694983 hasConcept C70259352 @default.
- W1666694983 hasConcept C739882 @default.
- W1666694983 hasConcept C79337645 @default.
- W1666694983 hasConcept C83546350 @default.
- W1666694983 hasConcept C9936470 @default.
- W1666694983 hasConceptScore W1666694983C105795698 @default.
- W1666694983 hasConceptScore W1666694983C119857082 @default.
- W1666694983 hasConceptScore W1666694983C152877465 @default.
- W1666694983 hasConceptScore W1666694983C154945302 @default.
- W1666694983 hasConceptScore W1666694983C185429906 @default.
- W1666694983 hasConceptScore W1666694983C25294789 @default.
- W1666694983 hasConceptScore W1666694983C33923547 @default.
- W1666694983 hasConceptScore W1666694983C41008148 @default.
- W1666694983 hasConceptScore W1666694983C46889948 @default.
- W1666694983 hasConceptScore W1666694983C48921125 @default.
- W1666694983 hasConceptScore W1666694983C50644808 @default.
- W1666694983 hasConceptScore W1666694983C70259352 @default.