Matches in SemOpenAlex for { <https://semopenalex.org/work/W166684757> ?p ?o ?g. }
- W166684757 abstract "In an idealistic setting, quantum metrology protocols allow to sense physical parameters with mean squared error that scales as $1/N^2$ with the number of particles involved---substantially surpassing the $1/N$-scaling characteristic to classical statistics. A natural question arises, whether such an impressive enhancement persists when one takes into account the decoherence effects that are unavoidable in any real-life implementation. In this thesis, we resolve a major part of this issue by describing general techniques that allow to quantify the attainable precision in metrological schemes in the presence of uncorrelated noise. We show that the abstract geometrical structure of a quantum channel describing the noisy evolution of a single particle dictates then critical bounds on the ultimate quantum enhancement. Our results prove that an infinitesimal amount of noise is enough to restrict the precision to scale classically in the asymptotic $N$ limit, and thus constrain the maximal improvement to a constant factor. Although for low numbers of particles the decoherence may be ignored, for large $N$ the presence of noise heavily alters the form of both optimal states and measurements attaining the ultimate resolution. However, the established bounds are then typically achievable with use of techniques natural to current experiments. In this work, we thoroughly introduce the necessary concepts and mathematical tools lying behind metrological tasks, including both frequentist and Bayesian estimation theory frameworks. We provide examples of applications of the methods presented to typical qubit noise models, yet we also discuss in detail the phase estimation tasks in Mach-Zehnder interferometry both in the classical and quantum setting---with particular emphasis given to photonic losses while analysing the impact of decoherence." @default.
- W166684757 created "2016-06-24" @default.
- W166684757 creator A5079335003 @default.
- W166684757 date "2014-09-01" @default.
- W166684757 modified "2023-09-27" @default.
- W166684757 title "Precision bounds in noisy quantum metrology" @default.
- W166684757 cites W108129224 @default.
- W166684757 cites W1229217581 @default.
- W166684757 cites W126998201 @default.
- W166684757 cites W137744920 @default.
- W166684757 cites W1500551892 @default.
- W166684757 cites W1573082642 @default.
- W166684757 cites W1574861711 @default.
- W166684757 cites W1578322733 @default.
- W166684757 cites W1579533523 @default.
- W166684757 cites W1760945589 @default.
- W166684757 cites W1964020044 @default.
- W166684757 cites W1965392255 @default.
- W166684757 cites W1965711535 @default.
- W166684757 cites W1967516855 @default.
- W166684757 cites W1969445769 @default.
- W166684757 cites W1970578927 @default.
- W166684757 cites W1974449530 @default.
- W166684757 cites W1974550153 @default.
- W166684757 cites W1976280626 @default.
- W166684757 cites W1981272288 @default.
- W166684757 cites W1982455649 @default.
- W166684757 cites W1983173896 @default.
- W166684757 cites W1983700458 @default.
- W166684757 cites W1985144383 @default.
- W166684757 cites W1985734554 @default.
- W166684757 cites W1985771852 @default.
- W166684757 cites W1986076284 @default.
- W166684757 cites W1986407511 @default.
- W166684757 cites W1986993171 @default.
- W166684757 cites W1989340955 @default.
- W166684757 cites W1990463130 @default.
- W166684757 cites W1991085121 @default.
- W166684757 cites W1991315745 @default.
- W166684757 cites W1991826265 @default.
- W166684757 cites W1993580202 @default.
- W166684757 cites W1995672555 @default.
- W166684757 cites W1997256312 @default.
- W166684757 cites W1999509003 @default.
- W166684757 cites W2001479666 @default.
- W166684757 cites W2003807262 @default.
- W166684757 cites W2004339996 @default.
- W166684757 cites W2007948277 @default.
- W166684757 cites W2008405757 @default.
- W166684757 cites W2011272574 @default.
- W166684757 cites W2015683881 @default.
- W166684757 cites W2015876000 @default.
- W166684757 cites W2017154611 @default.
- W166684757 cites W2017302690 @default.
- W166684757 cites W2018015605 @default.
- W166684757 cites W2018448440 @default.
- W166684757 cites W2020861455 @default.
- W166684757 cites W2025454168 @default.
- W166684757 cites W2025532235 @default.
- W166684757 cites W2032839191 @default.
- W166684757 cites W2032966202 @default.
- W166684757 cites W2033225070 @default.
- W166684757 cites W2034616707 @default.
- W166684757 cites W2035141247 @default.
- W166684757 cites W2036595722 @default.
- W166684757 cites W2037609284 @default.
- W166684757 cites W2039225510 @default.
- W166684757 cites W2040348359 @default.
- W166684757 cites W2041765604 @default.
- W166684757 cites W2043396597 @default.
- W166684757 cites W2046714599 @default.
- W166684757 cites W2048305092 @default.
- W166684757 cites W2051618454 @default.
- W166684757 cites W2051869207 @default.
- W166684757 cites W2059235845 @default.
- W166684757 cites W2063150264 @default.
- W166684757 cites W2065645751 @default.
- W166684757 cites W2065908384 @default.
- W166684757 cites W2068118692 @default.
- W166684757 cites W2074626019 @default.
- W166684757 cites W2076842149 @default.
- W166684757 cites W2078635972 @default.
- W166684757 cites W2082084245 @default.
- W166684757 cites W2082945629 @default.
- W166684757 cites W2083423624 @default.
- W166684757 cites W2083576616 @default.
- W166684757 cites W2084661371 @default.
- W166684757 cites W2090498840 @default.
- W166684757 cites W2093164320 @default.
- W166684757 cites W2093689636 @default.
- W166684757 cites W2096109311 @default.
- W166684757 cites W2108491246 @default.
- W166684757 cites W2108590725 @default.
- W166684757 cites W2116102644 @default.
- W166684757 cites W2122870230 @default.
- W166684757 cites W2125303188 @default.
- W166684757 cites W2129606687 @default.
- W166684757 cites W2129818474 @default.
- W166684757 cites W2138966110 @default.
- W166684757 cites W2148115906 @default.