Matches in SemOpenAlex for { <https://semopenalex.org/work/W1667722779> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1667722779 abstract "In this paper we present a study that compares the semantic networks of text comprehension and multimedia comprehension. This comparison is based on the concept learning (CL) model of comprehension. The model, much like artificial neural networks models, mimics the comprehension processes of the human brain. We conducted a human study for the purpose of revealing the semantic variations in comprehending text and comprehending audio-video multimedia. Each participant in the study created a concept semantic network of what they understand, and these networks were processed by the CL-model. The parameters of the CL-model give us insights into the collective learning of the two groups as well as personal performance of each individual. The model metrics are analyzed to reveal quantitative and qualitative differences. The combination of computational modeling of comprehension with semantic networks analysis, makes us able to measure comprehension performance of reader and watchers in a way that was not possible before. Some of the important results that we found indicate that textual media provided easier integration of newly learned concepts with background information. At the same time, we found that recognizing an overwhelming number of concepts is easier with audio-video multimedia. The presented results are important for media creators and educators, as well as artificial intelligence scientists who aim at creating systems that resemble human learning. Similar to the way biology inspired statistical learning algorithms, studying cognitive tasks, such as comprehension, can help us understand human behavior and build systems that imitate human learning." @default.
- W1667722779 created "2016-06-24" @default.
- W1667722779 creator A5004634804 @default.
- W1667722779 creator A5017638182 @default.
- W1667722779 date "2015-07-01" @default.
- W1667722779 modified "2023-09-26" @default.
- W1667722779 title "Is learning by reading a book better than watching a movie? A computational analysis of semantic concept network growth during text and multimedia comprehension" @default.
- W1667722779 cites W1498436455 @default.
- W1667722779 cites W1549555932 @default.
- W1667722779 cites W1601129377 @default.
- W1667722779 cites W1976496923 @default.
- W1667722779 cites W1982739778 @default.
- W1667722779 cites W1995409781 @default.
- W1667722779 cites W2013058825 @default.
- W1667722779 cites W2034358152 @default.
- W1667722779 cites W2052336411 @default.
- W1667722779 cites W2084015864 @default.
- W1667722779 cites W2095653202 @default.
- W1667722779 cites W2098169560 @default.
- W1667722779 cites W2492866258 @default.
- W1667722779 cites W3159934092 @default.
- W1667722779 cites W4214825932 @default.
- W1667722779 doi "https://doi.org/10.1109/ijcnn.2015.7280761" @default.
- W1667722779 hasPublicationYear "2015" @default.
- W1667722779 type Work @default.
- W1667722779 sameAs 1667722779 @default.
- W1667722779 citedByCount "8" @default.
- W1667722779 countsByYear W16677227792016 @default.
- W1667722779 countsByYear W16677227792017 @default.
- W1667722779 countsByYear W16677227792020 @default.
- W1667722779 countsByYear W16677227792022 @default.
- W1667722779 countsByYear W16677227792023 @default.
- W1667722779 crossrefType "proceedings-article" @default.
- W1667722779 hasAuthorship W1667722779A5004634804 @default.
- W1667722779 hasAuthorship W1667722779A5017638182 @default.
- W1667722779 hasConcept C138885662 @default.
- W1667722779 hasConcept C154945302 @default.
- W1667722779 hasConcept C169760540 @default.
- W1667722779 hasConcept C169900460 @default.
- W1667722779 hasConcept C184337299 @default.
- W1667722779 hasConcept C199360897 @default.
- W1667722779 hasConcept C204321447 @default.
- W1667722779 hasConcept C2778780117 @default.
- W1667722779 hasConcept C41008148 @default.
- W1667722779 hasConcept C41895202 @default.
- W1667722779 hasConcept C49774154 @default.
- W1667722779 hasConcept C511192102 @default.
- W1667722779 hasConcept C554936623 @default.
- W1667722779 hasConcept C85407183 @default.
- W1667722779 hasConcept C86803240 @default.
- W1667722779 hasConceptScore W1667722779C138885662 @default.
- W1667722779 hasConceptScore W1667722779C154945302 @default.
- W1667722779 hasConceptScore W1667722779C169760540 @default.
- W1667722779 hasConceptScore W1667722779C169900460 @default.
- W1667722779 hasConceptScore W1667722779C184337299 @default.
- W1667722779 hasConceptScore W1667722779C199360897 @default.
- W1667722779 hasConceptScore W1667722779C204321447 @default.
- W1667722779 hasConceptScore W1667722779C2778780117 @default.
- W1667722779 hasConceptScore W1667722779C41008148 @default.
- W1667722779 hasConceptScore W1667722779C41895202 @default.
- W1667722779 hasConceptScore W1667722779C49774154 @default.
- W1667722779 hasConceptScore W1667722779C511192102 @default.
- W1667722779 hasConceptScore W1667722779C554936623 @default.
- W1667722779 hasConceptScore W1667722779C85407183 @default.
- W1667722779 hasConceptScore W1667722779C86803240 @default.
- W1667722779 hasLocation W16677227791 @default.
- W1667722779 hasOpenAccess W1667722779 @default.
- W1667722779 hasPrimaryLocation W16677227791 @default.
- W1667722779 hasRelatedWork W1969359128 @default.
- W1667722779 hasRelatedWork W1982811735 @default.
- W1667722779 hasRelatedWork W2324727228 @default.
- W1667722779 hasRelatedWork W2362662964 @default.
- W1667722779 hasRelatedWork W2389366623 @default.
- W1667722779 hasRelatedWork W2524839221 @default.
- W1667722779 hasRelatedWork W2564535630 @default.
- W1667722779 hasRelatedWork W2890708534 @default.
- W1667722779 hasRelatedWork W4223892844 @default.
- W1667722779 hasRelatedWork W568945309 @default.
- W1667722779 isParatext "false" @default.
- W1667722779 isRetracted "false" @default.
- W1667722779 magId "1667722779" @default.
- W1667722779 workType "article" @default.