Matches in SemOpenAlex for { <https://semopenalex.org/work/W1668779724> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W1668779724 abstract "For the Kirillov-Poisson structure on the vector space $g^*$, where $g$ is a finite-dimensional Lie algebra, it is known at least two canonical deformations quantization of this structure: they are the M. Kontsevich universal formula [K], and the formula, arising from the classical Campbell-Baker-Hausdorff formula [Ka]. It was proved in [Ka] that the last formula is exactly the part of Kontsevich's formula consisting of all the admissible graphs without (oriented) cycles between the vertices of the first type. It follows from the CBH-theorem that this part of Kontsevich's formula defines an associative product (in the case of a linear Poisson structure). The aim of these notes is to prove the last result directly, using the methods analogous to [K] instead of the CBH-formula. We construct an $L_infty$-morphism $U_lincolon[T^ndot_poly]_linto D^ndot_poly$ from the dg Lie algebra of polyvector fields with linear coefficients to the dg Lie algebra of polydifferential operators, which is not equal to the restriction of the Formality $L_infty$-morphism $Ucolon T^ndot_polyto D^ndot_poly$ [K] to the subalgebra $[T^ndot_poly]_lin$. For a bivector field $alpha$ with linear coefficients such that $[alpha,alpha]=0$ the corresponding solution $U_lin(alpha)$ of the Maurer-Cartan equation in $D^ndot_poly$ defines exactly the CBH-quantization,in the case of the harmonic angle map [K], Sect.2.We prove the associativity of the restricted Kontsevich formula (in the linear case) also for any angle map [K], Sect.6.2." @default.
- W1668779724 created "2016-06-24" @default.
- W1668779724 creator A5085727267 @default.
- W1668779724 date "1999-03-06" @default.
- W1668779724 modified "2023-09-27" @default.
- W1668779724 title "On the Kontsevich and the Campbell-Baker-Hausdorff deformation quantizations of a linear Poisson structure" @default.
- W1668779724 hasPublicationYear "1999" @default.
- W1668779724 type Work @default.
- W1668779724 sameAs 1668779724 @default.
- W1668779724 citedByCount "6" @default.
- W1668779724 countsByYear W16687797242021 @default.
- W1668779724 crossrefType "posted-content" @default.
- W1668779724 hasAuthorship W1668779724A5085727267 @default.
- W1668779724 hasConcept C136119220 @default.
- W1668779724 hasConcept C137212723 @default.
- W1668779724 hasConcept C168619227 @default.
- W1668779724 hasConcept C191399826 @default.
- W1668779724 hasConcept C197375991 @default.
- W1668779724 hasConcept C202444582 @default.
- W1668779724 hasConcept C33923547 @default.
- W1668779724 hasConcept C51568863 @default.
- W1668779724 hasConcept C67996461 @default.
- W1668779724 hasConceptScore W1668779724C136119220 @default.
- W1668779724 hasConceptScore W1668779724C137212723 @default.
- W1668779724 hasConceptScore W1668779724C168619227 @default.
- W1668779724 hasConceptScore W1668779724C191399826 @default.
- W1668779724 hasConceptScore W1668779724C197375991 @default.
- W1668779724 hasConceptScore W1668779724C202444582 @default.
- W1668779724 hasConceptScore W1668779724C33923547 @default.
- W1668779724 hasConceptScore W1668779724C51568863 @default.
- W1668779724 hasConceptScore W1668779724C67996461 @default.
- W1668779724 hasLocation W16687797241 @default.
- W1668779724 hasOpenAccess W1668779724 @default.
- W1668779724 hasPrimaryLocation W16687797241 @default.
- W1668779724 hasRelatedWork W1565910224 @default.
- W1668779724 hasRelatedWork W1974547277 @default.
- W1668779724 hasRelatedWork W1974665356 @default.
- W1668779724 hasRelatedWork W2004671711 @default.
- W1668779724 hasRelatedWork W2071417479 @default.
- W1668779724 hasRelatedWork W2161879643 @default.
- W1668779724 hasRelatedWork W3100450066 @default.
- W1668779724 hasRelatedWork W3102069989 @default.
- W1668779724 hasRelatedWork W3157598847 @default.
- W1668779724 isParatext "false" @default.
- W1668779724 isRetracted "false" @default.
- W1668779724 magId "1668779724" @default.
- W1668779724 workType "article" @default.