Matches in SemOpenAlex for { <https://semopenalex.org/work/W1670516574> ?p ?o ?g. }
- W1670516574 abstract "Massive graphs arise in a many scenarios, for example, traffic data analysis in large networks, large scale scientific experiments, and clustering of large data sets. The semi-streaming model was proposed for processing massive graphs. In the semi-streaming model, we have a random accessible memory which is near-linear in the number of vertices. The input graph (or equivalently, edges in the graph) is presented as a sequential list of edges (insertion-only model) or edge insertions and deletions (dynamic model). The list is read-only but we may make multiple passes over the list. There has been a few results in the insertion-only model such as computing distance spanners and approximating the maximum matching. In this thesis, we present some algorithms and techniques for (i) solving more complex problems in the semi-streaming model, (for example, problems in the dynamic model) and (ii) having better solutions for the problems which have been studied (for example, the maximum matching problem). In course of both of these, we develop new techniques with broad applications and explore the rich trade-offs between the complexity of models (insertion-only streams vs. dynamic streams), the number of passes, space, accuracy, and running time. 1. We initiate the study of dynamic graph streams. We start with basic problems such as the connectivity problem and computing the minimum spanning tree. These problems are This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/606 trivial in the insertion-only model. However, they require non-trivial (and multiple passes for computing the exact minimum spanning tree) algorithms in the dynamic model. 2. Second, we present a graph sparsification algorithm in the semi-streaming model. A graph sparsification is a sparse graph that approximately preserves all the cut values of a graph. Such a graph acts as an oracle for solving cut-related problems, for example, the minimum cut problem and the multicut problem. Our algorithm produce a graph sparsification with high probability in one pass. 3. Third, we use the primal-dual algorithms to develop the semi-streaming algorithms. The primal-dual algorithms have been widely accepted as a framework for solving linear programs and semidefinite programs faster. In contrast, we apply the method for reducing space and number of passes in addition to reducing the running time. We also present some examples that arise in applications and show how to apply the techniques: the multicut problem, the correlation clustering problem, and the maximum matching problem. As a consequence, we also develop near-linear time algorithms for the $b$-matching problems which were not known before. Degree Type Dissertation This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/606 Degree Name Doctor of Philosophy (PhD) Graduate Group Computer and Information Science First Advisor Sudipto Guha" @default.
- W1670516574 created "2016-06-24" @default.
- W1670516574 creator A5068326243 @default.
- W1670516574 date "2013-01-01" @default.
- W1670516574 modified "2023-09-27" @default.
- W1670516574 title "Analyzing Massive Graphs in the Semi-streaming Model" @default.
- W1670516574 cites W109597122 @default.
- W1670516574 cites W125735179 @default.
- W1670516574 cites W136000211 @default.
- W1670516574 cites W1485041102 @default.
- W1670516574 cites W1514707655 @default.
- W1670516574 cites W1551652843 @default.
- W1670516574 cites W1560003866 @default.
- W1670516574 cites W1564876084 @default.
- W1670516574 cites W1578891227 @default.
- W1670516574 cites W1592346261 @default.
- W1670516574 cites W1595640791 @default.
- W1670516574 cites W1618327071 @default.
- W1670516574 cites W1668215238 @default.
- W1670516574 cites W1675653635 @default.
- W1670516574 cites W1761167196 @default.
- W1670516574 cites W189727877 @default.
- W1670516574 cites W1899379166 @default.
- W1670516574 cites W1947006564 @default.
- W1670516574 cites W1964773853 @default.
- W1670516574 cites W1965972569 @default.
- W1670516574 cites W1972920042 @default.
- W1670516574 cites W1976103322 @default.
- W1670516574 cites W1982991092 @default.
- W1670516574 cites W1984103551 @default.
- W1670516574 cites W1985875030 @default.
- W1670516574 cites W1995547833 @default.
- W1670516574 cites W1997010704 @default.
- W1670516574 cites W2002576896 @default.
- W1670516574 cites W2003813631 @default.
- W1670516574 cites W2005633226 @default.
- W1670516574 cites W2008816808 @default.
- W1670516574 cites W2009695707 @default.
- W1670516574 cites W2012776084 @default.
- W1670516574 cites W2014533003 @default.
- W1670516574 cites W2017732166 @default.
- W1670516574 cites W2019040312 @default.
- W1670516574 cites W2020384210 @default.
- W1670516574 cites W2028468530 @default.
- W1670516574 cites W2029151046 @default.
- W1670516574 cites W2029880758 @default.
- W1670516574 cites W2037576616 @default.
- W1670516574 cites W2042631176 @default.
- W1670516574 cites W2043428092 @default.
- W1670516574 cites W2044343300 @default.
- W1670516574 cites W2045533739 @default.
- W1670516574 cites W2050787268 @default.
- W1670516574 cites W2050961553 @default.
- W1670516574 cites W2054420170 @default.
- W1670516574 cites W2056518357 @default.
- W1670516574 cites W2060385919 @default.
- W1670516574 cites W2066398433 @default.
- W1670516574 cites W2068888615 @default.
- W1670516574 cites W2069414131 @default.
- W1670516574 cites W2071769989 @default.
- W1670516574 cites W2082227928 @default.
- W1670516574 cites W2089066317 @default.
- W1670516574 cites W2091858563 @default.
- W1670516574 cites W2100440346 @default.
- W1670516574 cites W2115049345 @default.
- W1670516574 cites W2123805664 @default.
- W1670516574 cites W2125664420 @default.
- W1670516574 cites W2126077878 @default.
- W1670516574 cites W2129575457 @default.
- W1670516574 cites W2131726153 @default.
- W1670516574 cites W2134422938 @default.
- W1670516574 cites W2143606444 @default.
- W1670516574 cites W2144146806 @default.
- W1670516574 cites W2145593504 @default.
- W1670516574 cites W2146081992 @default.
- W1670516574 cites W2148137544 @default.
- W1670516574 cites W2150148016 @default.
- W1670516574 cites W2150187954 @default.
- W1670516574 cites W2150191781 @default.
- W1670516574 cites W2150865801 @default.
- W1670516574 cites W2152986618 @default.
- W1670516574 cites W2153968170 @default.
- W1670516574 cites W2153977620 @default.
- W1670516574 cites W2154191591 @default.
- W1670516574 cites W2157529519 @default.
- W1670516574 cites W2165753192 @default.
- W1670516574 cites W2189595797 @default.
- W1670516574 cites W2327315803 @default.
- W1670516574 cites W2419092805 @default.
- W1670516574 cites W2570637728 @default.
- W1670516574 cites W2611754984 @default.
- W1670516574 cites W2611804663 @default.
- W1670516574 cites W2621193479 @default.
- W1670516574 cites W2788362138 @default.
- W1670516574 cites W2914959486 @default.
- W1670516574 cites W2928570649 @default.
- W1670516574 hasPublicationYear "2013" @default.
- W1670516574 type Work @default.
- W1670516574 sameAs 1670516574 @default.
- W1670516574 citedByCount "0" @default.