Matches in SemOpenAlex for { <https://semopenalex.org/work/W1672581350> ?p ?o ?g. }
- W1672581350 abstract "Tumour markers are standard tools for the differential diagnosis of cancer. However, the occurrence of nonspecific symptoms and different malignancies involving the same cancer site may lead to a high proportion of misclassifications. Classification accuracy can be improved by combining information from different markers using standard data mining techniques, like Decision Tree (DT), Artificial Neural Network (ANN), and k-Nearest Neighbour (KNN) classifier. Unfortunately, each method suffers from some unavoidable limitations. DT, in general, tends to show a low classification performance, whereas ANN and KNN produce a black-box classification that does not provide biological information useful for clinical purposes. Logic Learning Machine (LLM) is an innovative method of supervised data analysis capable of building classifiers described by a set of intelligible rules including simple conditions in their antecedent part. It is essentially an efficient implementation of the Switching Neural Network model and reaches excellent classification accuracy while keeping low the computational demand. LLM was applied to data from a consecutive cohort of 169 patients admitted for diagnosis to two pulmonary departments in Northern Italy from 2009 to 2011. Patients included 52 malignant pleural mesotheliomas (MPM), 62 pleural metastases (MTX) from other tumours and 55 benign diseases (BD) associated with pleurisies. Concentration of three tumour markers (CEA, CYFRA 21-1 and SMRP) was measured in the pleural fluid of each patient and a cytological examination was also carried out. The performance of LLM and that of three competing methods (DT, KNN and ANN) was assessed by leave-one-out cross-validation. LLM outperformed all other considered methods. Global accuracy was 77.5% for LLM, 72.8% for DT, 54.4% for KNN, and 63.9% for ANN, respectively. In more details, LLM correctly classified 79% of MPM, 66% of MTX and 89% of BD. The corresponding figures for DT were: MPM = 83%, MTX = 55% and BD = 84%; for KNN: MPM = 58%, MTX = 45%, BD = 62%; for ANN: MPM = 71%, MTX = 47%, BD = 76%. Finally, LLM provided classification rules in a very good agreement with a priori knowledge about the biological role of the considered tumour markers. LLM is a new flexible tool potentially useful for the differential diagnosis of pleural mesothelioma." @default.
- W1672581350 created "2016-06-24" @default.
- W1672581350 creator A5003029538 @default.
- W1672581350 creator A5004748627 @default.
- W1672581350 creator A5007100991 @default.
- W1672581350 creator A5012535846 @default.
- W1672581350 creator A5014089764 @default.
- W1672581350 creator A5022457963 @default.
- W1672581350 creator A5038385351 @default.
- W1672581350 creator A5046375745 @default.
- W1672581350 creator A5051436822 @default.
- W1672581350 creator A5079583401 @default.
- W1672581350 date "2015-06-01" @default.
- W1672581350 modified "2023-10-14" @default.
- W1672581350 title "Differential diagnosis of pleural mesothelioma using Logic Learning Machine" @default.
- W1672581350 cites W1480376833 @default.
- W1672581350 cites W1987141818 @default.
- W1672581350 cites W2004842269 @default.
- W1672581350 cites W2060527325 @default.
- W1672581350 cites W2065431888 @default.
- W1672581350 cites W2066387427 @default.
- W1672581350 cites W2069748412 @default.
- W1672581350 cites W2093055238 @default.
- W1672581350 cites W2108589405 @default.
- W1672581350 cites W2112478769 @default.
- W1672581350 cites W2113802061 @default.
- W1672581350 cites W2117338865 @default.
- W1672581350 cites W2122696721 @default.
- W1672581350 cites W2147453890 @default.
- W1672581350 cites W2148837839 @default.
- W1672581350 cites W2154738733 @default.
- W1672581350 cites W2166529769 @default.
- W1672581350 cites W2170069434 @default.
- W1672581350 cites W4211134618 @default.
- W1672581350 doi "https://doi.org/10.1186/1471-2105-16-s9-s3" @default.
- W1672581350 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4464205" @default.
- W1672581350 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26051106" @default.
- W1672581350 hasPublicationYear "2015" @default.
- W1672581350 type Work @default.
- W1672581350 sameAs 1672581350 @default.
- W1672581350 citedByCount "18" @default.
- W1672581350 countsByYear W16725813502015 @default.
- W1672581350 countsByYear W16725813502016 @default.
- W1672581350 countsByYear W16725813502017 @default.
- W1672581350 countsByYear W16725813502018 @default.
- W1672581350 countsByYear W16725813502019 @default.
- W1672581350 countsByYear W16725813502020 @default.
- W1672581350 countsByYear W16725813502021 @default.
- W1672581350 countsByYear W16725813502022 @default.
- W1672581350 countsByYear W16725813502023 @default.
- W1672581350 crossrefType "journal-article" @default.
- W1672581350 hasAuthorship W1672581350A5003029538 @default.
- W1672581350 hasAuthorship W1672581350A5004748627 @default.
- W1672581350 hasAuthorship W1672581350A5007100991 @default.
- W1672581350 hasAuthorship W1672581350A5012535846 @default.
- W1672581350 hasAuthorship W1672581350A5014089764 @default.
- W1672581350 hasAuthorship W1672581350A5022457963 @default.
- W1672581350 hasAuthorship W1672581350A5038385351 @default.
- W1672581350 hasAuthorship W1672581350A5046375745 @default.
- W1672581350 hasAuthorship W1672581350A5051436822 @default.
- W1672581350 hasAuthorship W1672581350A5079583401 @default.
- W1672581350 hasBestOaLocation W16725813501 @default.
- W1672581350 hasConcept C119857082 @default.
- W1672581350 hasConcept C124101348 @default.
- W1672581350 hasConcept C142724271 @default.
- W1672581350 hasConcept C153180895 @default.
- W1672581350 hasConcept C154945302 @default.
- W1672581350 hasConcept C2777407522 @default.
- W1672581350 hasConcept C41008148 @default.
- W1672581350 hasConcept C50644808 @default.
- W1672581350 hasConcept C71924100 @default.
- W1672581350 hasConcept C84525736 @default.
- W1672581350 hasConcept C95623464 @default.
- W1672581350 hasConceptScore W1672581350C119857082 @default.
- W1672581350 hasConceptScore W1672581350C124101348 @default.
- W1672581350 hasConceptScore W1672581350C142724271 @default.
- W1672581350 hasConceptScore W1672581350C153180895 @default.
- W1672581350 hasConceptScore W1672581350C154945302 @default.
- W1672581350 hasConceptScore W1672581350C2777407522 @default.
- W1672581350 hasConceptScore W1672581350C41008148 @default.
- W1672581350 hasConceptScore W1672581350C50644808 @default.
- W1672581350 hasConceptScore W1672581350C71924100 @default.
- W1672581350 hasConceptScore W1672581350C84525736 @default.
- W1672581350 hasConceptScore W1672581350C95623464 @default.
- W1672581350 hasIssue "S9" @default.
- W1672581350 hasLocation W16725813501 @default.
- W1672581350 hasLocation W16725813502 @default.
- W1672581350 hasLocation W16725813503 @default.
- W1672581350 hasOpenAccess W1672581350 @default.
- W1672581350 hasPrimaryLocation W16725813501 @default.
- W1672581350 hasRelatedWork W1470425429 @default.
- W1672581350 hasRelatedWork W2921036759 @default.
- W1672581350 hasRelatedWork W2961085424 @default.
- W1672581350 hasRelatedWork W3200719183 @default.
- W1672581350 hasRelatedWork W3204641204 @default.
- W1672581350 hasRelatedWork W4205958290 @default.
- W1672581350 hasRelatedWork W4249229055 @default.
- W1672581350 hasRelatedWork W4249746146 @default.
- W1672581350 hasRelatedWork W4283016678 @default.
- W1672581350 hasRelatedWork W4318350883 @default.