Matches in SemOpenAlex for { <https://semopenalex.org/work/W167324425> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W167324425 endingPage "88" @default.
- W167324425 startingPage "33" @default.
- W167324425 abstract "One way to construct adaptive algorithms leads to the so called Stochastic Gradient algorithms which will be the subject of this chapter. The most important algorithm in this family, the Least Mean Square algorithm (LMS), is obtained from the SD algorithm, employing suitable estimators of the correlation matrix and cross correlation vector. Other important algorithms as the Normalized Least Mean Square (NLMS) or the Affine Projection (APA) algorithms are obtained from straightforward generalizations of the LMS algorithm. One of the most useful properties of adaptive algorithms is the ability of tracking variations in the signals statistics. As they are implemented using stochastic signals, the update directions in these adaptive algorithms become subject to random fluctuations called gradient noise. This will lead to the question regarding the performance (in statistical terms) of these systems. In this chapter we will try to give a succinct introduction to this kind of adaptive filter and to its more relevant characteristics." @default.
- W167324425 created "2016-06-24" @default.
- W167324425 creator A5015405980 @default.
- W167324425 creator A5035529329 @default.
- W167324425 date "2012-08-04" @default.
- W167324425 modified "2023-10-17" @default.
- W167324425 title "Stochastic Gradient Adaptive Algorithms" @default.
- W167324425 cites W1544576535 @default.
- W167324425 cites W166049059 @default.
- W167324425 cites W1991273000 @default.
- W167324425 cites W2011491310 @default.
- W167324425 cites W2017354785 @default.
- W167324425 cites W2030319782 @default.
- W167324425 cites W2033787551 @default.
- W167324425 cites W2065242685 @default.
- W167324425 cites W2080516498 @default.
- W167324425 cites W2080967273 @default.
- W167324425 cites W2085350184 @default.
- W167324425 cites W2091123167 @default.
- W167324425 cites W2095987270 @default.
- W167324425 cites W2096040597 @default.
- W167324425 cites W2096915734 @default.
- W167324425 cites W2097313060 @default.
- W167324425 cites W2097987904 @default.
- W167324425 cites W2098928704 @default.
- W167324425 cites W2103089564 @default.
- W167324425 cites W2111143454 @default.
- W167324425 cites W2111288224 @default.
- W167324425 cites W2111411409 @default.
- W167324425 cites W2112397567 @default.
- W167324425 cites W2112971812 @default.
- W167324425 cites W2116059849 @default.
- W167324425 cites W2119596571 @default.
- W167324425 cites W2120438021 @default.
- W167324425 cites W2125081705 @default.
- W167324425 cites W2125927307 @default.
- W167324425 cites W2127076901 @default.
- W167324425 cites W2128495863 @default.
- W167324425 cites W2128817619 @default.
- W167324425 cites W2136599893 @default.
- W167324425 cites W2139182243 @default.
- W167324425 cites W2149350404 @default.
- W167324425 cites W2149825398 @default.
- W167324425 cites W2149901222 @default.
- W167324425 cites W2150463174 @default.
- W167324425 cites W2152623266 @default.
- W167324425 cites W2153170103 @default.
- W167324425 cites W2155487796 @default.
- W167324425 cites W2157564666 @default.
- W167324425 cites W2159722671 @default.
- W167324425 cites W2161141257 @default.
- W167324425 cites W2162725450 @default.
- W167324425 cites W2167987810 @default.
- W167324425 cites W2168837669 @default.
- W167324425 cites W2170459977 @default.
- W167324425 cites W2173639595 @default.
- W167324425 cites W4236087597 @default.
- W167324425 cites W4236555067 @default.
- W167324425 cites W4237964482 @default.
- W167324425 cites W4239240501 @default.
- W167324425 cites W604319709 @default.
- W167324425 doi "https://doi.org/10.1007/978-3-642-30299-2_4" @default.
- W167324425 hasPublicationYear "2012" @default.
- W167324425 type Work @default.
- W167324425 sameAs 167324425 @default.
- W167324425 citedByCount "1" @default.
- W167324425 countsByYear W1673244252015 @default.
- W167324425 crossrefType "book-chapter" @default.
- W167324425 hasAuthorship W167324425A5015405980 @default.
- W167324425 hasAuthorship W167324425A5035529329 @default.
- W167324425 hasConcept C11413529 @default.
- W167324425 hasConcept C41008148 @default.
- W167324425 hasConceptScore W167324425C11413529 @default.
- W167324425 hasConceptScore W167324425C41008148 @default.
- W167324425 hasLocation W1673244251 @default.
- W167324425 hasOpenAccess W167324425 @default.
- W167324425 hasPrimaryLocation W1673244251 @default.
- W167324425 hasRelatedWork W2003465964 @default.
- W167324425 hasRelatedWork W2051487156 @default.
- W167324425 hasRelatedWork W2333698505 @default.
- W167324425 hasRelatedWork W2351491280 @default.
- W167324425 hasRelatedWork W2371447506 @default.
- W167324425 hasRelatedWork W2386767533 @default.
- W167324425 hasRelatedWork W2390279801 @default.
- W167324425 hasRelatedWork W2748952813 @default.
- W167324425 hasRelatedWork W2899084033 @default.
- W167324425 hasRelatedWork W303980170 @default.
- W167324425 isParatext "false" @default.
- W167324425 isRetracted "false" @default.
- W167324425 magId "167324425" @default.
- W167324425 workType "book-chapter" @default.