Matches in SemOpenAlex for { <https://semopenalex.org/work/W1674919833> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1674919833 abstract "Spectral unmixing is an important task for remotely sensed hyperspectral data exploitation. It amounts the identification of pure spectral signatures (endmembers) in the data, and the estimation of the abundance of each endmember in each (possibly mixed) pixel. A challenging problem in spectral unmixing is how to determine the number of endmembers in a given scene. For this purpose, many algorithms have been proposed in the recent literature, being the estimation of the Virtual Dimensionality (VD) of the hyperspectral image and the hyperspectral signal subspace estimator (HySime) two of the most popular choices. Unfortunately, the high dimensionality of the hyperspectral data provided by modern sensors as well as the inherent computational complexity clearly make the use of these algorithms prohibitive for applications under real-time or near real-time constraints. Hence, the utilization of high performance computing platforms in order to accelerate the process of unmixing a hyperspectral image becomes mandatory for such scenarios. Reconfigurable hardware solutions such as field programmable gate arrays (FPGAs) have consolidated during the last years as one of the preferred choices for the fast processing of hyperspectral remotely sensed images due to their advantages over other high performance computing systems, such as clusters of computers, multicore processors and/or graphical processing units (GPUs). This paper uncovers two FPGA-based architectures for accelerating the process of estimating the number of endmembers that constitute a hyperspectral image according to the VD and the HySime algorithms. The proposed methods have been implemented on a Virtex-7 XC7VX690T FPGA and tested using real hyperspectral data collected by NASAs Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite mining district in Nevada and the World Trade Center in New York. Experimental results demonstrate that the VD implementation exhibits real-time performance while the HySime implementation exhibits near real-time performance. Both implementations significantly outperform a software version, which makes our reconfigurable system appealing for onboard hyperspectral data processing." @default.
- W1674919833 created "2016-06-24" @default.
- W1674919833 creator A5006165301 @default.
- W1674919833 creator A5034310981 @default.
- W1674919833 creator A5040571808 @default.
- W1674919833 creator A5047871791 @default.
- W1674919833 date "2015-09-01" @default.
- W1674919833 modified "2023-09-30" @default.
- W1674919833 title "FPGA implementation to estimate the number of endmembers in hyperspectral images" @default.
- W1674919833 cites W1601538959 @default.
- W1674919833 cites W1986698810 @default.
- W1674919833 cites W1993694937 @default.
- W1674919833 cites W1995347266 @default.
- W1674919833 cites W2000477810 @default.
- W1674919833 cites W2014987223 @default.
- W1674919833 cites W2035415936 @default.
- W1674919833 cites W2048649979 @default.
- W1674919833 cites W2062487815 @default.
- W1674919833 cites W2070424424 @default.
- W1674919833 cites W2092155521 @default.
- W1674919833 cites W2095687521 @default.
- W1674919833 cites W2117993944 @default.
- W1674919833 cites W2119571645 @default.
- W1674919833 cites W2121987709 @default.
- W1674919833 cites W2144579659 @default.
- W1674919833 cites W2165755981 @default.
- W1674919833 cites W2166922611 @default.
- W1674919833 cites W2170401993 @default.
- W1674919833 cites W2806197952 @default.
- W1674919833 cites W3139878356 @default.
- W1674919833 doi "https://doi.org/10.1109/fpl.2015.7293936" @default.
- W1674919833 hasPublicationYear "2015" @default.
- W1674919833 type Work @default.
- W1674919833 sameAs 1674919833 @default.
- W1674919833 citedByCount "1" @default.
- W1674919833 countsByYear W16749198332017 @default.
- W1674919833 crossrefType "proceedings-article" @default.
- W1674919833 hasAuthorship W1674919833A5006165301 @default.
- W1674919833 hasAuthorship W1674919833A5034310981 @default.
- W1674919833 hasAuthorship W1674919833A5040571808 @default.
- W1674919833 hasAuthorship W1674919833A5047871791 @default.
- W1674919833 hasConcept C105795698 @default.
- W1674919833 hasConcept C111030470 @default.
- W1674919833 hasConcept C153180895 @default.
- W1674919833 hasConcept C154945302 @default.
- W1674919833 hasConcept C159078339 @default.
- W1674919833 hasConcept C160633673 @default.
- W1674919833 hasConcept C185429906 @default.
- W1674919833 hasConcept C31972630 @default.
- W1674919833 hasConcept C33923547 @default.
- W1674919833 hasConcept C41008148 @default.
- W1674919833 hasConcept C42935608 @default.
- W1674919833 hasConcept C58237817 @default.
- W1674919833 hasConcept C9390403 @default.
- W1674919833 hasConceptScore W1674919833C105795698 @default.
- W1674919833 hasConceptScore W1674919833C111030470 @default.
- W1674919833 hasConceptScore W1674919833C153180895 @default.
- W1674919833 hasConceptScore W1674919833C154945302 @default.
- W1674919833 hasConceptScore W1674919833C159078339 @default.
- W1674919833 hasConceptScore W1674919833C160633673 @default.
- W1674919833 hasConceptScore W1674919833C185429906 @default.
- W1674919833 hasConceptScore W1674919833C31972630 @default.
- W1674919833 hasConceptScore W1674919833C33923547 @default.
- W1674919833 hasConceptScore W1674919833C41008148 @default.
- W1674919833 hasConceptScore W1674919833C42935608 @default.
- W1674919833 hasConceptScore W1674919833C58237817 @default.
- W1674919833 hasConceptScore W1674919833C9390403 @default.
- W1674919833 hasLocation W16749198331 @default.
- W1674919833 hasOpenAccess W1674919833 @default.
- W1674919833 hasPrimaryLocation W16749198331 @default.
- W1674919833 hasRelatedWork W1554810399 @default.
- W1674919833 hasRelatedWork W1560612360 @default.
- W1674919833 hasRelatedWork W1964409388 @default.
- W1674919833 hasRelatedWork W1982618228 @default.
- W1674919833 hasRelatedWork W1993694937 @default.
- W1674919833 hasRelatedWork W1995347266 @default.
- W1674919833 hasRelatedWork W2007480584 @default.
- W1674919833 hasRelatedWork W2041310692 @default.
- W1674919833 hasRelatedWork W2048419331 @default.
- W1674919833 hasRelatedWork W2054973482 @default.
- W1674919833 hasRelatedWork W2102203042 @default.
- W1674919833 hasRelatedWork W2130815286 @default.
- W1674919833 hasRelatedWork W2140629888 @default.
- W1674919833 hasRelatedWork W2312917021 @default.
- W1674919833 hasRelatedWork W2342695286 @default.
- W1674919833 hasRelatedWork W2516893097 @default.
- W1674919833 hasRelatedWork W2539650996 @default.
- W1674919833 hasRelatedWork W2560525382 @default.
- W1674919833 hasRelatedWork W2573913483 @default.
- W1674919833 hasRelatedWork W1603120003 @default.
- W1674919833 isParatext "false" @default.
- W1674919833 isRetracted "false" @default.
- W1674919833 magId "1674919833" @default.
- W1674919833 workType "article" @default.