Matches in SemOpenAlex for { <https://semopenalex.org/work/W1675447403> ?p ?o ?g. }
- W1675447403 endingPage "291" @default.
- W1675447403 startingPage "274" @default.
- W1675447403 abstract "There is considerable evidence indicating that disease risk in carriers of high-risk mutations (e.g. BRCA1 and BRCA2) varies by other genetic factors. Such mutations tend to be rare in the population and studies of genetic modifiers of risk have focused on sampling mutation carriers through clinical genetics centres. Genetic testing targets affected individuals from high-risk families, making ascertainment of mutation carriers non-random with respect to disease phenotype. Standard analytical methods can lead to biased estimates of associations. Methods proposed to address this problem include a weighted-cohort (WC) and retrospective likelihood (RL) approach. Their performance has not been evaluated systematically. We evaluate these methods by simulation and extend the RL to analysing associations of two diseases simultaneously (competing risks RL-CRRL). The standard cohort approach (Cox regression) yielded the most biased risk ratio (RR) estimates (relative bias-RB: -25% to -17%) and had the lowest power. The WC and RL approaches provided similar RR estimates, were least biased (RB: -2.6% to 2.5%), and had the lowest mean-squared errors. The RL method generally had more power than WC. When analysing associations with two diseases, ignoring a potential association with one disease leads to inflated type I errors for inferences with respect to the second disease and biased RR estimates. The CRRL generally gave unbiased RR estimates for both disease risks and had correct nominal type I errors. These methods are illustrated by analyses of genetic modifiers of breast and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers." @default.
- W1675447403 created "2016-06-24" @default.
- W1675447403 creator A5032254612 @default.
- W1675447403 creator A5038773254 @default.
- W1675447403 creator A5049055281 @default.
- W1675447403 creator A5054396870 @default.
- W1675447403 creator A5071873464 @default.
- W1675447403 creator A5082989514 @default.
- W1675447403 date "2012-04-01" @default.
- W1675447403 modified "2023-10-01" @default.
- W1675447403 title "Evaluation of Association Methods for Analysing Modifiers of Disease Risk in Carriers of High-Risk Mutations" @default.
- W1675447403 cites W1765369324 @default.
- W1675447403 cites W1930550304 @default.
- W1675447403 cites W1968068448 @default.
- W1675447403 cites W1970858272 @default.
- W1675447403 cites W1979052528 @default.
- W1675447403 cites W1996708972 @default.
- W1675447403 cites W2001701937 @default.
- W1675447403 cites W2013245256 @default.
- W1675447403 cites W2015565457 @default.
- W1675447403 cites W2038981426 @default.
- W1675447403 cites W2045153164 @default.
- W1675447403 cites W2046209489 @default.
- W1675447403 cites W2064696798 @default.
- W1675447403 cites W2073023604 @default.
- W1675447403 cites W2074183907 @default.
- W1675447403 cites W2084618260 @default.
- W1675447403 cites W2095606487 @default.
- W1675447403 cites W2099799455 @default.
- W1675447403 cites W2103970959 @default.
- W1675447403 cites W2107578540 @default.
- W1675447403 cites W2121989229 @default.
- W1675447403 cites W2122038062 @default.
- W1675447403 cites W2137186819 @default.
- W1675447403 cites W2142146386 @default.
- W1675447403 cites W2150111967 @default.
- W1675447403 cites W2167409131 @default.
- W1675447403 cites W2168783384 @default.
- W1675447403 cites W2170958095 @default.
- W1675447403 cites W2328105863 @default.
- W1675447403 doi "https://doi.org/10.1002/gepi.21620" @default.
- W1675447403 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22714938" @default.
- W1675447403 hasPublicationYear "2012" @default.
- W1675447403 type Work @default.
- W1675447403 sameAs 1675447403 @default.
- W1675447403 citedByCount "34" @default.
- W1675447403 countsByYear W16754474032012 @default.
- W1675447403 countsByYear W16754474032013 @default.
- W1675447403 countsByYear W16754474032014 @default.
- W1675447403 countsByYear W16754474032015 @default.
- W1675447403 countsByYear W16754474032016 @default.
- W1675447403 countsByYear W16754474032017 @default.
- W1675447403 countsByYear W16754474032018 @default.
- W1675447403 countsByYear W16754474032019 @default.
- W1675447403 countsByYear W16754474032020 @default.
- W1675447403 countsByYear W16754474032022 @default.
- W1675447403 countsByYear W16754474032023 @default.
- W1675447403 crossrefType "journal-article" @default.
- W1675447403 hasAuthorship W1675447403A5032254612 @default.
- W1675447403 hasAuthorship W1675447403A5038773254 @default.
- W1675447403 hasAuthorship W1675447403A5049055281 @default.
- W1675447403 hasAuthorship W1675447403A5054396870 @default.
- W1675447403 hasAuthorship W1675447403A5071873464 @default.
- W1675447403 hasAuthorship W1675447403A5082989514 @default.
- W1675447403 hasConcept C104317684 @default.
- W1675447403 hasConcept C105795698 @default.
- W1675447403 hasConcept C126322002 @default.
- W1675447403 hasConcept C135763542 @default.
- W1675447403 hasConcept C143998085 @default.
- W1675447403 hasConcept C153209595 @default.
- W1675447403 hasConcept C186413461 @default.
- W1675447403 hasConcept C2779134260 @default.
- W1675447403 hasConcept C2908647359 @default.
- W1675447403 hasConcept C33923547 @default.
- W1675447403 hasConcept C44249647 @default.
- W1675447403 hasConcept C501734568 @default.
- W1675447403 hasConcept C54355233 @default.
- W1675447403 hasConcept C71924100 @default.
- W1675447403 hasConcept C72563966 @default.
- W1675447403 hasConcept C82789193 @default.
- W1675447403 hasConcept C86803240 @default.
- W1675447403 hasConcept C99454951 @default.
- W1675447403 hasConceptScore W1675447403C104317684 @default.
- W1675447403 hasConceptScore W1675447403C105795698 @default.
- W1675447403 hasConceptScore W1675447403C126322002 @default.
- W1675447403 hasConceptScore W1675447403C135763542 @default.
- W1675447403 hasConceptScore W1675447403C143998085 @default.
- W1675447403 hasConceptScore W1675447403C153209595 @default.
- W1675447403 hasConceptScore W1675447403C186413461 @default.
- W1675447403 hasConceptScore W1675447403C2779134260 @default.
- W1675447403 hasConceptScore W1675447403C2908647359 @default.
- W1675447403 hasConceptScore W1675447403C33923547 @default.
- W1675447403 hasConceptScore W1675447403C44249647 @default.
- W1675447403 hasConceptScore W1675447403C501734568 @default.
- W1675447403 hasConceptScore W1675447403C54355233 @default.
- W1675447403 hasConceptScore W1675447403C71924100 @default.
- W1675447403 hasConceptScore W1675447403C72563966 @default.
- W1675447403 hasConceptScore W1675447403C82789193 @default.