Matches in SemOpenAlex for { <https://semopenalex.org/work/W1675478785> ?p ?o ?g. }
- W1675478785 endingPage "285" @default.
- W1675478785 startingPage "267" @default.
- W1675478785 abstract "Results from a control integration and time-dependent greenhouse warming experiments performed with a coupled ocean-atmosphere model are analysed in terms of their signal-to-noise properties. The aim is to illustrate techniques for efficient description of the space-time evolution of signals and noise and to identify potentially useful components of a multivariate greenhouse-gas “fingerprint”. The three 100-year experiments analysed here simulate the response of the climate system to a step-function doubling of CO2 and to the time-dependent greenhouse-gas increases specified in Scenarios A (“Business as Usual”) and D (“Draconian Measures”) of the Intergovernmental Panel on Climate Change (IPCC). If signal and noise patterns are highly similar, the separation of the signal from the natural variability noise is difficult. We use the pattern correlation between the dominant Empirical Orthogonal Functions (EOFs) of the control run and the Scenario A experiment as a measure of the similarity of signal and noise patterns. The EOF 1 patterns of signal and noise are least similar for near-surface temperature and the vertical structure of zonal winds, and are most similar for sea level pressure (SLP). The dominant signal and noise modes of precipitable water and stratospheric/tropospheric temperature contrasts show considerable pattern similarity. Despite the differences in forcing history, a highly similar EOF 1 surface temperature response pattern is found in all three greenhouse warming experiments. A large part of this similarity is due to a common land-sea contrast component of the signal. To determine the degree to which the signal is contaminated by the natural variability (and/or drift) of the control run, we project the Scenario A data onto EOFs 1 and 2 of the control. Signal contamination by the EOF 1 and 2 modes of the noise is lowest for near-surface temperature, a situation favorable for detection. The signals for precipitable water, SLP, and the vertical structure of zonal temperature and zonal winds are significantly contaminated by the dominant noise modes. We use cumulative explained spatial variance, principal component time series, and projections onto EOFs in order to investigate the time evolution of the dominant signal and noise modes. In the case of near-surface temperature, a single pattern emerges as the dominant signal component in the second half of the Scenario A experiment. The projections onto EOFs 1 and 2 of the control run indicate that Scenario D has a large common variability and/or drift component with the control run. This common component is also apparent between years 30 and 50 of the Scenario A experiment, but is small in the 2 × CO2 integration. The trajectories of the dominant Scenario A and control run modes evolve differently, regardless of the basis vectors chosen for projection, thus making it feasible to separate signal and noise within the first two decades of the experiments. For Scenario D it may not be possible to discriminate between the dominant signal and noise modes until the final 2–3 decades of the 100-year integration." @default.
- W1675478785 created "2016-06-24" @default.
- W1675478785 creator A5016039253 @default.
- W1675478785 creator A5017246427 @default.
- W1675478785 creator A5023126551 @default.
- W1675478785 creator A5029672195 @default.
- W1675478785 creator A5067273223 @default.
- W1675478785 creator A5069433956 @default.
- W1675478785 creator A5072775640 @default.
- W1675478785 date "1994-03-01" @default.
- W1675478785 modified "2023-09-24" @default.
- W1675478785 title "Signal-to-noise analysis of time-dependent greenhouse warming experiments" @default.
- W1675478785 cites W1518504097 @default.
- W1675478785 cites W1524247963 @default.
- W1675478785 cites W1716016095 @default.
- W1675478785 cites W172352085 @default.
- W1675478785 cites W1965326454 @default.
- W1675478785 cites W1974758328 @default.
- W1675478785 cites W1975982290 @default.
- W1675478785 cites W1976319295 @default.
- W1675478785 cites W1978044686 @default.
- W1675478785 cites W1979057774 @default.
- W1675478785 cites W1979186030 @default.
- W1675478785 cites W1983905897 @default.
- W1675478785 cites W1986843849 @default.
- W1675478785 cites W1993787322 @default.
- W1675478785 cites W2001283784 @default.
- W1675478785 cites W2003906400 @default.
- W1675478785 cites W2005128195 @default.
- W1675478785 cites W2018247270 @default.
- W1675478785 cites W2034272703 @default.
- W1675478785 cites W2034892926 @default.
- W1675478785 cites W2040899214 @default.
- W1675478785 cites W2076932795 @default.
- W1675478785 cites W2087666490 @default.
- W1675478785 cites W2088039222 @default.
- W1675478785 cites W2091329900 @default.
- W1675478785 cites W2094748450 @default.
- W1675478785 cites W2112262492 @default.
- W1675478785 cites W2151161113 @default.
- W1675478785 cites W2175946842 @default.
- W1675478785 doi "https://doi.org/10.1007/bf00204743" @default.
- W1675478785 hasPublicationYear "1994" @default.
- W1675478785 type Work @default.
- W1675478785 sameAs 1675478785 @default.
- W1675478785 citedByCount "59" @default.
- W1675478785 countsByYear W16754787852012 @default.
- W1675478785 countsByYear W16754787852013 @default.
- W1675478785 countsByYear W16754787852014 @default.
- W1675478785 countsByYear W16754787852015 @default.
- W1675478785 countsByYear W16754787852016 @default.
- W1675478785 countsByYear W16754787852018 @default.
- W1675478785 countsByYear W16754787852019 @default.
- W1675478785 countsByYear W16754787852020 @default.
- W1675478785 countsByYear W16754787852022 @default.
- W1675478785 crossrefType "journal-article" @default.
- W1675478785 hasAuthorship W1675478785A5016039253 @default.
- W1675478785 hasAuthorship W1675478785A5017246427 @default.
- W1675478785 hasAuthorship W1675478785A5023126551 @default.
- W1675478785 hasAuthorship W1675478785A5029672195 @default.
- W1675478785 hasAuthorship W1675478785A5067273223 @default.
- W1675478785 hasAuthorship W1675478785A5069433956 @default.
- W1675478785 hasAuthorship W1675478785A5072775640 @default.
- W1675478785 hasBestOaLocation W16754787852 @default.
- W1675478785 hasConcept C111368507 @default.
- W1675478785 hasConcept C115961682 @default.
- W1675478785 hasConcept C127313418 @default.
- W1675478785 hasConcept C13724139 @default.
- W1675478785 hasConcept C154945302 @default.
- W1675478785 hasConcept C197115733 @default.
- W1675478785 hasConcept C199360897 @default.
- W1675478785 hasConcept C2779843651 @default.
- W1675478785 hasConcept C39432304 @default.
- W1675478785 hasConcept C41008148 @default.
- W1675478785 hasConcept C47737302 @default.
- W1675478785 hasConcept C49204034 @default.
- W1675478785 hasConcept C9075549 @default.
- W1675478785 hasConcept C99498987 @default.
- W1675478785 hasConceptScore W1675478785C111368507 @default.
- W1675478785 hasConceptScore W1675478785C115961682 @default.
- W1675478785 hasConceptScore W1675478785C127313418 @default.
- W1675478785 hasConceptScore W1675478785C13724139 @default.
- W1675478785 hasConceptScore W1675478785C154945302 @default.
- W1675478785 hasConceptScore W1675478785C197115733 @default.
- W1675478785 hasConceptScore W1675478785C199360897 @default.
- W1675478785 hasConceptScore W1675478785C2779843651 @default.
- W1675478785 hasConceptScore W1675478785C39432304 @default.
- W1675478785 hasConceptScore W1675478785C41008148 @default.
- W1675478785 hasConceptScore W1675478785C47737302 @default.
- W1675478785 hasConceptScore W1675478785C49204034 @default.
- W1675478785 hasConceptScore W1675478785C9075549 @default.
- W1675478785 hasConceptScore W1675478785C99498987 @default.
- W1675478785 hasIssue "6" @default.
- W1675478785 hasLocation W16754787851 @default.
- W1675478785 hasLocation W16754787852 @default.
- W1675478785 hasOpenAccess W1675478785 @default.
- W1675478785 hasPrimaryLocation W16754787851 @default.
- W1675478785 hasRelatedWork W1206445259 @default.