Matches in SemOpenAlex for { <https://semopenalex.org/work/W16757744> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W16757744 abstract "This doctoral thesis is comprised of four papers that all relate to the subject of Time Series Analysis.The first paper of the thesis considers point estimation in a nonnegative, hence non-Gaussian, AR(1) model. The parameter estimation is carried out using a type of extreme value estimators (EVEs). A novel estimation method based on the EVEs is presented. The theoretical analysis is complemented with Monte Carlo simulation results and the paper is concluded by an empirical example.The second paper extends the model of the first paper of the thesis and considers semiparametric, robust point estimation in a nonlinear nonnegative autoregression. The nonnegative AR(1) model of the first paper is extended in three important ways: First, we allow the errors to be serially correlated. Second, we allow for heteroskedasticity of unknown form. Third, we allow for a multi-variable mapping of previous observations. Once more, the EVEs used for parameter estimation are shown to be strongly consistent under very general conditions. The theoretical analysis is complemented with extensive Monte Carlo simulation studies that illustrate the asymptotic theory and indicate reasonable small sample properties of the proposed estimators.In the third paper we construct a simple nonnegative time series model for realized volatility, use the results of the second paper to estimate the proposed model on S&P 500 monthly realized volatilities, and then use the estimated model to make one-month-ahead forecasts. The out-of-sample performance of the proposed model is evaluated against a number of standard models. Various tests and accuracy measures are utilized to evaluate the forecast performances. It is found that forecasts from the nonnegative model perform exceptionally well under the mean absolute error and the mean absolute percentage error forecast accuracy measures.In the fourth and last paper of the thesis we construct a multivariate extension of the popular Diebold-Mariano test. Under the null hypothesis of equal predictive accuracy of three or more forecasting models, the proposed test statistic has an asymptotic Chi-squared distribution. To explore whether the behavior of the test in moderate-sized samples can be improved, we also provide a finite-sample correction. A small-scale Monte Carlo study indicates that the proposed test has reasonable size properties in large samples and that it benefits noticeably from the finite-sample correction, even in quite large samples. The paper is concluded by an empirical example that illustrates the practical use of the two tests." @default.
- W16757744 created "2016-06-24" @default.
- W16757744 creator A5048550786 @default.
- W16757744 date "2008-01-01" @default.
- W16757744 modified "2023-09-27" @default.
- W16757744 title "Point Estimation in a Nonnegative First-Order Autoregression" @default.
- W16757744 hasPublicationYear "2008" @default.
- W16757744 type Work @default.
- W16757744 sameAs 16757744 @default.
- W16757744 citedByCount "0" @default.
- W16757744 crossrefType "journal-article" @default.
- W16757744 hasAuthorship W16757744A5048550786 @default.
- W16757744 hasConcept C101104100 @default.
- W16757744 hasConcept C105795698 @default.
- W16757744 hasConcept C143724316 @default.
- W16757744 hasConcept C149782125 @default.
- W16757744 hasConcept C151730666 @default.
- W16757744 hasConcept C159877910 @default.
- W16757744 hasConcept C185429906 @default.
- W16757744 hasConcept C19499675 @default.
- W16757744 hasConcept C28826006 @default.
- W16757744 hasConcept C33923547 @default.
- W16757744 hasConcept C86803240 @default.
- W16757744 hasConceptScore W16757744C101104100 @default.
- W16757744 hasConceptScore W16757744C105795698 @default.
- W16757744 hasConceptScore W16757744C143724316 @default.
- W16757744 hasConceptScore W16757744C149782125 @default.
- W16757744 hasConceptScore W16757744C151730666 @default.
- W16757744 hasConceptScore W16757744C159877910 @default.
- W16757744 hasConceptScore W16757744C185429906 @default.
- W16757744 hasConceptScore W16757744C19499675 @default.
- W16757744 hasConceptScore W16757744C28826006 @default.
- W16757744 hasConceptScore W16757744C33923547 @default.
- W16757744 hasConceptScore W16757744C86803240 @default.
- W16757744 hasLocation W167577441 @default.
- W16757744 hasOpenAccess W16757744 @default.
- W16757744 hasPrimaryLocation W167577441 @default.
- W16757744 hasRelatedWork W131000167 @default.
- W16757744 hasRelatedWork W1532239233 @default.
- W16757744 hasRelatedWork W1585487507 @default.
- W16757744 hasRelatedWork W1597163460 @default.
- W16757744 hasRelatedWork W2025666281 @default.
- W16757744 hasRelatedWork W2084128084 @default.
- W16757744 hasRelatedWork W2122210216 @default.
- W16757744 hasRelatedWork W2137151419 @default.
- W16757744 hasRelatedWork W2142566359 @default.
- W16757744 hasRelatedWork W2187455501 @default.
- W16757744 hasRelatedWork W2188350723 @default.
- W16757744 hasRelatedWork W2793541746 @default.
- W16757744 hasRelatedWork W2982583006 @default.
- W16757744 hasRelatedWork W3121334252 @default.
- W16757744 hasRelatedWork W3121986157 @default.
- W16757744 hasRelatedWork W3122530281 @default.
- W16757744 hasRelatedWork W3123072862 @default.
- W16757744 hasRelatedWork W3200126763 @default.
- W16757744 hasRelatedWork W3206192350 @default.
- W16757744 hasRelatedWork W628882070 @default.
- W16757744 isParatext "false" @default.
- W16757744 isRetracted "false" @default.
- W16757744 magId "16757744" @default.
- W16757744 workType "article" @default.