Matches in SemOpenAlex for { <https://semopenalex.org/work/W1677920909> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1677920909 abstract "With the fast development of online education, the volume of education data traffic increased dramatically. Security information is potential to be mined from it. We can use data mining with some cloud computing platform for malware detection because the data volume is huge. The online education institutions need to virtualize their data centers and build cloud infrastructure for better using resources. So they should move data centers from physical machines(PMs) to virtual machines(VMs) for implementing the virtualization. But there are some risks such as the loss of computing ability, performance decline and so on. In this paper, we do a series of experiments to test performance of data mining algorithm based on Hadoop in physical machines and virtual machines. Through these experiments, we find that the performance of data mining algorithm based on Hadoop depends on disk I/O performance of Hadoop. The disk I/O performance of Hadoop deployed in PMs is better than that in VMs. Some iterative algorithms like k-means need more disk I/O, so we don't advise using VMs for computing. Other basic algorithms like Bayes classification need less disk I/O, so we advise computing in the VMs." @default.
- W1677920909 created "2016-06-24" @default.
- W1677920909 creator A5024225595 @default.
- W1677920909 creator A5043706626 @default.
- W1677920909 creator A5058999081 @default.
- W1677920909 creator A5084818732 @default.
- W1677920909 date "2015-07-01" @default.
- W1677920909 modified "2023-09-27" @default.
- W1677920909 title "Research on the Performance of Mining Packets of Educational Network for Malware Detection between PM and VM" @default.
- W1677920909 cites W1550206324 @default.
- W1677920909 cites W1964241047 @default.
- W1677920909 cites W1965602589 @default.
- W1677920909 cites W2017100743 @default.
- W1677920909 cites W2058394802 @default.
- W1677920909 cites W2099242680 @default.
- W1677920909 cites W2103718624 @default.
- W1677920909 cites W2120900307 @default.
- W1677920909 cites W2122410182 @default.
- W1677920909 cites W2131721563 @default.
- W1677920909 cites W2131799137 @default.
- W1677920909 cites W2154894831 @default.
- W1677920909 cites W2160536005 @default.
- W1677920909 cites W2163614729 @default.
- W1677920909 cites W2173213060 @default.
- W1677920909 cites W27803667 @default.
- W1677920909 cites W599466854 @default.
- W1677920909 doi "https://doi.org/10.1109/imis.2015.47" @default.
- W1677920909 hasPublicationYear "2015" @default.
- W1677920909 type Work @default.
- W1677920909 sameAs 1677920909 @default.
- W1677920909 citedByCount "2" @default.
- W1677920909 countsByYear W16779209092016 @default.
- W1677920909 crossrefType "proceedings-article" @default.
- W1677920909 hasAuthorship W1677920909A5024225595 @default.
- W1677920909 hasAuthorship W1677920909A5043706626 @default.
- W1677920909 hasAuthorship W1677920909A5058999081 @default.
- W1677920909 hasAuthorship W1677920909A5084818732 @default.
- W1677920909 hasConcept C111919701 @default.
- W1677920909 hasConcept C119857082 @default.
- W1677920909 hasConcept C121332964 @default.
- W1677920909 hasConcept C12267149 @default.
- W1677920909 hasConcept C124101348 @default.
- W1677920909 hasConcept C158379750 @default.
- W1677920909 hasConcept C20556612 @default.
- W1677920909 hasConcept C25344961 @default.
- W1677920909 hasConcept C31258907 @default.
- W1677920909 hasConcept C41008148 @default.
- W1677920909 hasConcept C513985346 @default.
- W1677920909 hasConcept C52001869 @default.
- W1677920909 hasConcept C541664917 @default.
- W1677920909 hasConcept C62520636 @default.
- W1677920909 hasConcept C79974875 @default.
- W1677920909 hasConceptScore W1677920909C111919701 @default.
- W1677920909 hasConceptScore W1677920909C119857082 @default.
- W1677920909 hasConceptScore W1677920909C121332964 @default.
- W1677920909 hasConceptScore W1677920909C12267149 @default.
- W1677920909 hasConceptScore W1677920909C124101348 @default.
- W1677920909 hasConceptScore W1677920909C158379750 @default.
- W1677920909 hasConceptScore W1677920909C20556612 @default.
- W1677920909 hasConceptScore W1677920909C25344961 @default.
- W1677920909 hasConceptScore W1677920909C31258907 @default.
- W1677920909 hasConceptScore W1677920909C41008148 @default.
- W1677920909 hasConceptScore W1677920909C513985346 @default.
- W1677920909 hasConceptScore W1677920909C52001869 @default.
- W1677920909 hasConceptScore W1677920909C541664917 @default.
- W1677920909 hasConceptScore W1677920909C62520636 @default.
- W1677920909 hasConceptScore W1677920909C79974875 @default.
- W1677920909 hasLocation W16779209091 @default.
- W1677920909 hasOpenAccess W1677920909 @default.
- W1677920909 hasPrimaryLocation W16779209091 @default.
- W1677920909 hasRelatedWork W1831226595 @default.
- W1677920909 hasRelatedWork W1982123506 @default.
- W1677920909 hasRelatedWork W1991544704 @default.
- W1677920909 hasRelatedWork W1994722517 @default.
- W1677920909 hasRelatedWork W2000780492 @default.
- W1677920909 hasRelatedWork W2013453442 @default.
- W1677920909 hasRelatedWork W2018245342 @default.
- W1677920909 hasRelatedWork W2022012267 @default.
- W1677920909 hasRelatedWork W2047204394 @default.
- W1677920909 hasRelatedWork W2058394802 @default.
- W1677920909 hasRelatedWork W2062154294 @default.
- W1677920909 hasRelatedWork W2078500352 @default.
- W1677920909 hasRelatedWork W2088934114 @default.
- W1677920909 hasRelatedWork W2114924190 @default.
- W1677920909 hasRelatedWork W2126299219 @default.
- W1677920909 hasRelatedWork W2127757034 @default.
- W1677920909 hasRelatedWork W2325926474 @default.
- W1677920909 hasRelatedWork W2538136567 @default.
- W1677920909 hasRelatedWork W2550735486 @default.
- W1677920909 hasRelatedWork W2920956474 @default.
- W1677920909 isParatext "false" @default.
- W1677920909 isRetracted "false" @default.
- W1677920909 magId "1677920909" @default.
- W1677920909 workType "article" @default.