Matches in SemOpenAlex for { <https://semopenalex.org/work/W16873399> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W16873399 abstract "To this day, lung cancer remains the leading cause of all cancer deaths for both sexes. Current treatment options lead to a cure in only about ten percent of diagnosed cases of lung cancer. One of the main reasons why this type of cancer has such poor prognosis is that it is very difficult to diagnose at the early stages. It is well known that the survival rates can be improved by the early detection of pre-invasive lesions, which are believed to be the possible precursors to malignant tumours. Although new diagnostic devices are allowing numerous lesions to be detected early, it is becoming clear that only a small percentage of these will actually progress to cancer. Therefore, the critical question is how to determine the factors that will define which of these lesions will become malignant. In this thesis, two computational models and a novel approach to represent biological knowledge for use in the early diagnosis of cancer are presented. In the first part, a stochastic model representing the early development of pre-invasive neoplastic bronchial epithelial lesions as contact processes is introduced. The results of the simulations run on this model gave us some insight on the probability of growth of specific lesions. Yet, it also shed light on the fact that for an effective diagnostic tool we would need to consider a lot more information about the patients and their condition beyond the structural behaviour of independent lesions. This led to the development of a new approach to multidisciplinary biological knowledge representation: the Probabilistic Property-Based Model (PPBM). Based on a cognitive model of knowledge construction, PPBM presents a heuristic approach to diagnosis by taking into account multiple-domain elements such as imaging, serum, sputum, cytological and genetic data as well as personal medical history and lifestyle factors." @default.
- W16873399 created "2016-06-24" @default.
- W16873399 creator A5023324689 @default.
- W16873399 date "2005-01-01" @default.
- W16873399 modified "2023-09-26" @default.
- W16873399 title "Stochastic and heuristic modelling for analysis of the growth of pre-invasive lesions and for a multidisciplinary approach to early cancer diagnosis" @default.
- W16873399 hasPublicationYear "2005" @default.
- W16873399 type Work @default.
- W16873399 sameAs 16873399 @default.
- W16873399 citedByCount "5" @default.
- W16873399 crossrefType "dissertation" @default.
- W16873399 hasAuthorship W16873399A5023324689 @default.
- W16873399 hasConcept C121608353 @default.
- W16873399 hasConcept C126322002 @default.
- W16873399 hasConcept C142724271 @default.
- W16873399 hasConcept C144024400 @default.
- W16873399 hasConcept C17744445 @default.
- W16873399 hasConcept C177713679 @default.
- W16873399 hasConcept C199539241 @default.
- W16873399 hasConcept C22467394 @default.
- W16873399 hasConcept C2776256026 @default.
- W16873399 hasConcept C2776359362 @default.
- W16873399 hasConcept C36289849 @default.
- W16873399 hasConcept C71924100 @default.
- W16873399 hasConcept C94625758 @default.
- W16873399 hasConceptScore W16873399C121608353 @default.
- W16873399 hasConceptScore W16873399C126322002 @default.
- W16873399 hasConceptScore W16873399C142724271 @default.
- W16873399 hasConceptScore W16873399C144024400 @default.
- W16873399 hasConceptScore W16873399C17744445 @default.
- W16873399 hasConceptScore W16873399C177713679 @default.
- W16873399 hasConceptScore W16873399C199539241 @default.
- W16873399 hasConceptScore W16873399C22467394 @default.
- W16873399 hasConceptScore W16873399C2776256026 @default.
- W16873399 hasConceptScore W16873399C2776359362 @default.
- W16873399 hasConceptScore W16873399C36289849 @default.
- W16873399 hasConceptScore W16873399C71924100 @default.
- W16873399 hasConceptScore W16873399C94625758 @default.
- W16873399 hasLocation W168733991 @default.
- W16873399 hasOpenAccess W16873399 @default.
- W16873399 hasPrimaryLocation W168733991 @default.
- W16873399 hasRelatedWork W1480740341 @default.
- W16873399 hasRelatedWork W1504389809 @default.
- W16873399 hasRelatedWork W1893229108 @default.
- W16873399 hasRelatedWork W1992928849 @default.
- W16873399 hasRelatedWork W1997697966 @default.
- W16873399 hasRelatedWork W2023443236 @default.
- W16873399 hasRelatedWork W2079333278 @default.
- W16873399 hasRelatedWork W2164208322 @default.
- W16873399 hasRelatedWork W2176283065 @default.
- W16873399 hasRelatedWork W2291848788 @default.
- W16873399 hasRelatedWork W2465773512 @default.
- W16873399 hasRelatedWork W2570710533 @default.
- W16873399 hasRelatedWork W2911319454 @default.
- W16873399 hasRelatedWork W2953932065 @default.
- W16873399 hasRelatedWork W2977894503 @default.
- W16873399 hasRelatedWork W3017326420 @default.
- W16873399 hasRelatedWork W3084981300 @default.
- W16873399 hasRelatedWork W3175310704 @default.
- W16873399 hasRelatedWork W3197162275 @default.
- W16873399 hasRelatedWork W1837415053 @default.
- W16873399 isParatext "false" @default.
- W16873399 isRetracted "false" @default.
- W16873399 magId "16873399" @default.
- W16873399 workType "dissertation" @default.