Matches in SemOpenAlex for { <https://semopenalex.org/work/W1690703721> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1690703721 endingPage "133" @default.
- W1690703721 startingPage "129" @default.
- W1690703721 abstract "This paper combines some of our ideas to obtain the multitime variants of Hamilton-Jacobi theory. Section 1 introduces some Riemannian first order jet bundles. Section 2 describes the multitime Hamilton-Jacobi PDE system connected to the path independent curvilinear integral action. Section 3 analyzes the multitime HamiltonJacobi divergence PDE connected to multiple integral action. Section 4 studies the harmonic map Lagrangian. Section 5 underlines the novelty of our results. Key–Words: Hamilton-Jacobi PDE, path independent curvilinear integral action, multiple integral action, submanifolds. 1 Riemannian first order jet bundles Let (T, h) be a Riemannian manifold with m dimensions, and (M, g) be a Riemannian manifold with n dimensions. Then ( J1(T, M), h + g + h−1 ∗ g) is a Riemannian first order jet bundle with m + n + mn dimensions and ( J(T ×M,T ), h + g + h + h−1 ∗ h + h−1 ∗ g ) is a Riemannian first order jet bundle with n + 2m + mn + m2 dimensions. Particularly, the Riemannian manifolds (Rm, δαβ), (Rn, δij) determine the Riemannian first order jet bundles J1(Rm, Rn), J1(Rm ×Rn, Rm). 2 Multitime Hamilton-Jacobi PDE system In mathematics, the Hamilton-Jacobi PDE is a necessary condition describing extremal geometry in generalizations of calculus-of-variations problems. In physics, the Hamilton-Jacobi PDE is equivalent to Newton Law of Motion, Lagrangian Mechanics and Hamiltonian Mechanics. The Hamilton-Jacobi PDE is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely. We improve this point of view adding the multitime version of the Hamilton-Jacobi PDE (see [3]-[11]). Let t = (tα) ∈ Rm and x = (xi) ∈ Rn. Let S : Rm × Rn → R be a C1 function to whom we attach the constant level sets Σc : S(t, x) = c. Suppose Σc are submanifolds in Rn+m = Rm × Rn, i.e., the normal vector field ( ∂S ∂tβ , ∂S ∂xi ) is not zero anywhere. Let Γ : (t, x(t)) be an m-sheet transversal to the submanifolds Σc. Then the function c(t) = S(t, x(t)) has nonzero partial derivatives ∂c ∂tα (t) = ∂S ∂tα (t, x(t)) + ∂S ∂xi (t, x(t)) ∂xi ∂tα (t) = ∆α(t, x(t), xγ(t)) 6= 0. We accept Lα(t, x(t), xγ(t)) = ∆α(t, x(t), xγ(t)), i.e., the Lagrange 1-form Lα is just the total derivative of the function S(t, x(t)). It follows pγαi = ∂Lα ∂xi γ = ∂∆α ∂xγ = ∂S ∂xi δ α" @default.
- W1690703721 created "2016-06-24" @default.
- W1690703721 creator A5005064873 @default.
- W1690703721 creator A5042701150 @default.
- W1690703721 creator A5083671116 @default.
- W1690703721 date "2009-08-20" @default.
- W1690703721 modified "2023-10-15" @default.
- W1690703721 title "Multitime Hamilton-Jacobi theory" @default.
- W1690703721 cites W1907469314 @default.
- W1690703721 cites W1987166220 @default.
- W1690703721 cites W199001518 @default.
- W1690703721 cites W2079362605 @default.
- W1690703721 cites W2148428726 @default.
- W1690703721 cites W2159839749 @default.
- W1690703721 hasPublicationYear "2009" @default.
- W1690703721 type Work @default.
- W1690703721 sameAs 1690703721 @default.
- W1690703721 citedByCount "7" @default.
- W1690703721 countsByYear W16907037212012 @default.
- W1690703721 countsByYear W16907037212013 @default.
- W1690703721 countsByYear W16907037212017 @default.
- W1690703721 crossrefType "proceedings-article" @default.
- W1690703721 hasAuthorship W1690703721A5005064873 @default.
- W1690703721 hasAuthorship W1690703721A5042701150 @default.
- W1690703721 hasAuthorship W1690703721A5083671116 @default.
- W1690703721 hasConcept C112698675 @default.
- W1690703721 hasConcept C121332964 @default.
- W1690703721 hasConcept C127413603 @default.
- W1690703721 hasConcept C134306372 @default.
- W1690703721 hasConcept C144133560 @default.
- W1690703721 hasConcept C154018700 @default.
- W1690703721 hasConcept C181104567 @default.
- W1690703721 hasConcept C202444582 @default.
- W1690703721 hasConcept C2524010 @default.
- W1690703721 hasConcept C2778860007 @default.
- W1690703721 hasConcept C2779593128 @default.
- W1690703721 hasConcept C2780129039 @default.
- W1690703721 hasConcept C2780791683 @default.
- W1690703721 hasConcept C33923547 @default.
- W1690703721 hasConcept C37914503 @default.
- W1690703721 hasConcept C529865628 @default.
- W1690703721 hasConcept C62520636 @default.
- W1690703721 hasConcept C6270764 @default.
- W1690703721 hasConcept C78519656 @default.
- W1690703721 hasConcept C84114770 @default.
- W1690703721 hasConcept C98343798 @default.
- W1690703721 hasConceptScore W1690703721C112698675 @default.
- W1690703721 hasConceptScore W1690703721C121332964 @default.
- W1690703721 hasConceptScore W1690703721C127413603 @default.
- W1690703721 hasConceptScore W1690703721C134306372 @default.
- W1690703721 hasConceptScore W1690703721C144133560 @default.
- W1690703721 hasConceptScore W1690703721C154018700 @default.
- W1690703721 hasConceptScore W1690703721C181104567 @default.
- W1690703721 hasConceptScore W1690703721C202444582 @default.
- W1690703721 hasConceptScore W1690703721C2524010 @default.
- W1690703721 hasConceptScore W1690703721C2778860007 @default.
- W1690703721 hasConceptScore W1690703721C2779593128 @default.
- W1690703721 hasConceptScore W1690703721C2780129039 @default.
- W1690703721 hasConceptScore W1690703721C2780791683 @default.
- W1690703721 hasConceptScore W1690703721C33923547 @default.
- W1690703721 hasConceptScore W1690703721C37914503 @default.
- W1690703721 hasConceptScore W1690703721C529865628 @default.
- W1690703721 hasConceptScore W1690703721C62520636 @default.
- W1690703721 hasConceptScore W1690703721C6270764 @default.
- W1690703721 hasConceptScore W1690703721C78519656 @default.
- W1690703721 hasConceptScore W1690703721C84114770 @default.
- W1690703721 hasConceptScore W1690703721C98343798 @default.
- W1690703721 hasLocation W16907037211 @default.
- W1690703721 hasOpenAccess W1690703721 @default.
- W1690703721 hasPrimaryLocation W16907037211 @default.
- W1690703721 hasRelatedWork W1519351792 @default.
- W1690703721 hasRelatedWork W1996273141 @default.
- W1690703721 hasRelatedWork W2017813861 @default.
- W1690703721 hasRelatedWork W2067061084 @default.
- W1690703721 hasRelatedWork W2068853571 @default.
- W1690703721 hasRelatedWork W2194326243 @default.
- W1690703721 hasRelatedWork W2235334414 @default.
- W1690703721 hasRelatedWork W244587720 @default.
- W1690703721 hasRelatedWork W2491352354 @default.
- W1690703721 hasRelatedWork W2728967036 @default.
- W1690703721 hasRelatedWork W2736113805 @default.
- W1690703721 hasRelatedWork W2743652032 @default.
- W1690703721 hasRelatedWork W2894632393 @default.
- W1690703721 hasRelatedWork W2975148670 @default.
- W1690703721 hasRelatedWork W3046613134 @default.
- W1690703721 hasRelatedWork W3105248177 @default.
- W1690703721 hasRelatedWork W3132565394 @default.
- W1690703721 hasRelatedWork W3178210669 @default.
- W1690703721 hasRelatedWork W571765133 @default.
- W1690703721 hasRelatedWork W605324553 @default.
- W1690703721 isParatext "false" @default.
- W1690703721 isRetracted "false" @default.
- W1690703721 magId "1690703721" @default.
- W1690703721 workType "article" @default.