Matches in SemOpenAlex for { <https://semopenalex.org/work/W1691668264> ?p ?o ?g. }
- W1691668264 endingPage "1176" @default.
- W1691668264 startingPage "1041" @default.
- W1691668264 abstract "This chapter discusses various non-effective theorems, sketches a proof, and considers possible recursive analogues and their modifications. Many theorems in infinite combinatorics have non-effective proofs. KÖnig's Lemma is an important theorem in infinite combinatorics. Many theorems in infinite combinatorics can be derived through it. The chapter presents the classical proof of Ramsey's Theorem on colorings of [N]2 because of Ramsey, and shows that a recursive analogue of Ramsey's Theorem is false and gives an index-set version. It shows that there are two recursion-theoretic modifications that are true. The chapter presents a theorem that a graph is κ-colorable if all of its finite subgraphs are κ-colorable and shows that a recursive analogue is false. The chapter also considers the infinite version of Hall's Theorem on solutions to bipartite graphs and shows that a recursive analogue of Hall's Theorem is false and a recursion-theoretical modification is true. The chapter considers the infinite version of Dilworth's Theorem on partial orders and shows that a recursive analogue of Dilworth's Theorem is false and that there is a recursion-theoretic modification that is true. Definitions, notation, and miscellaneous results in recursive combinatorics have been provided in this chapter." @default.
- W1691668264 created "2016-06-24" @default.
- W1691668264 creator A5089274175 @default.
- W1691668264 date "1998-01-01" @default.
- W1691668264 modified "2023-10-02" @default.
- W1691668264 title "Chapter 16 A survey of recursive combinatorics" @default.
- W1691668264 cites W1514705400 @default.
- W1691668264 cites W1566410171 @default.
- W1691668264 cites W1597834884 @default.
- W1691668264 cites W1656795039 @default.
- W1691668264 cites W1963812473 @default.
- W1691668264 cites W1970064177 @default.
- W1691668264 cites W1971627130 @default.
- W1691668264 cites W1971817667 @default.
- W1691668264 cites W1975119571 @default.
- W1691668264 cites W1980691831 @default.
- W1691668264 cites W1981894804 @default.
- W1691668264 cites W1987762167 @default.
- W1691668264 cites W1997681421 @default.
- W1691668264 cites W1998185290 @default.
- W1691668264 cites W2002729262 @default.
- W1691668264 cites W2003828950 @default.
- W1691668264 cites W2005638249 @default.
- W1691668264 cites W2008839847 @default.
- W1691668264 cites W2010707166 @default.
- W1691668264 cites W2010770007 @default.
- W1691668264 cites W2012774000 @default.
- W1691668264 cites W2016125425 @default.
- W1691668264 cites W2016227329 @default.
- W1691668264 cites W2024551482 @default.
- W1691668264 cites W2032675544 @default.
- W1691668264 cites W2036673058 @default.
- W1691668264 cites W2038225707 @default.
- W1691668264 cites W2047601400 @default.
- W1691668264 cites W2048924528 @default.
- W1691668264 cites W2052512891 @default.
- W1691668264 cites W2056414301 @default.
- W1691668264 cites W2057674319 @default.
- W1691668264 cites W2062135743 @default.
- W1691668264 cites W2063292248 @default.
- W1691668264 cites W2063453390 @default.
- W1691668264 cites W2063706894 @default.
- W1691668264 cites W2065601606 @default.
- W1691668264 cites W2067489791 @default.
- W1691668264 cites W2070194138 @default.
- W1691668264 cites W2079721544 @default.
- W1691668264 cites W2080090262 @default.
- W1691668264 cites W2081035511 @default.
- W1691668264 cites W2082065673 @default.
- W1691668264 cites W2084263468 @default.
- W1691668264 cites W2091918101 @default.
- W1691668264 cites W2094108224 @default.
- W1691668264 cites W2094518278 @default.
- W1691668264 cites W2103589732 @default.
- W1691668264 cites W2106260240 @default.
- W1691668264 cites W2110917011 @default.
- W1691668264 cites W2114935093 @default.
- W1691668264 cites W2116353246 @default.
- W1691668264 cites W2119359259 @default.
- W1691668264 cites W2130271612 @default.
- W1691668264 cites W2131443763 @default.
- W1691668264 cites W2135756492 @default.
- W1691668264 cites W2138509834 @default.
- W1691668264 cites W2166858292 @default.
- W1691668264 cites W2168616714 @default.
- W1691668264 cites W2314550473 @default.
- W1691668264 cites W2321852024 @default.
- W1691668264 cites W2326563584 @default.
- W1691668264 cites W2330963367 @default.
- W1691668264 cites W2336574378 @default.
- W1691668264 cites W3021845913 @default.
- W1691668264 cites W4210731599 @default.
- W1691668264 cites W4213194823 @default.
- W1691668264 cites W4231402170 @default.
- W1691668264 cites W4233071742 @default.
- W1691668264 cites W4241824940 @default.
- W1691668264 cites W4246804796 @default.
- W1691668264 cites W4250699352 @default.
- W1691668264 cites W4254807835 @default.
- W1691668264 cites W4256369010 @default.
- W1691668264 cites W4301890399 @default.
- W1691668264 cites W763244836 @default.
- W1691668264 cites W868252825 @default.
- W1691668264 cites W986821702 @default.
- W1691668264 cites W2039202737 @default.
- W1691668264 doi "https://doi.org/10.1016/s0049-237x(98)80049-9" @default.
- W1691668264 hasPublicationYear "1998" @default.
- W1691668264 type Work @default.
- W1691668264 sameAs 1691668264 @default.
- W1691668264 citedByCount "7" @default.
- W1691668264 countsByYear W16916682642013 @default.
- W1691668264 countsByYear W16916682642014 @default.
- W1691668264 countsByYear W16916682642016 @default.
- W1691668264 countsByYear W16916682642018 @default.
- W1691668264 countsByYear W16916682642019 @default.
- W1691668264 crossrefType "book-chapter" @default.
- W1691668264 hasAuthorship W1691668264A5089274175 @default.
- W1691668264 hasConcept C108710211 @default.