Matches in SemOpenAlex for { <https://semopenalex.org/work/W1691962711> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1691962711 endingPage "672" @default.
- W1691962711 startingPage "665" @default.
- W1691962711 abstract "Abstract Transformers are expensive and important equipment in the whole power system. Fault in transformers not only affect electric utilities but also customers by interrupting the power supply. The maintenance and servicing of transformers is usually time consuming and costly. If we can somehow predict the incipient faults, its maintenance and servicing can be planned before faults actually happens. Dissolve gas analysis is an important method which can detect the incipient fault conditions. In earlier times faults were monitored by conventional methods, which were time taking and sometimes even need transformer to be out of service, which was a big drawback. Artificial Intelligence is a technique that can help in detecting the incipient fault conditions in lesser time with high accuracy as compared to the conventional techniques available. Key Gas, Dual Triangle, Rogers Ratio, IEC Ratio and, Doernenburg Method, percentage of gases like %C2H2, %C2H4, %CH4, and combination of gases are applied as an input to ANN models (PNN and MLP). MLP and PNN techniques are trained and compared to get the input parameter that gives most accurate fault predictions." @default.
- W1691962711 created "2016-06-24" @default.
- W1691962711 creator A5008016410 @default.
- W1691962711 creator A5026567808 @default.
- W1691962711 creator A5091302431 @default.
- W1691962711 date "2015-01-01" @default.
- W1691962711 modified "2023-09-26" @default.
- W1691962711 title "Probabilistic Neural Network Based Incipient Fault Identification Using DGA Dataset" @default.
- W1691962711 cites W1971409792 @default.
- W1691962711 cites W2008868217 @default.
- W1691962711 cites W2010332504 @default.
- W1691962711 cites W2019814461 @default.
- W1691962711 cites W2021362121 @default.
- W1691962711 cites W2050367260 @default.
- W1691962711 cites W2067248431 @default.
- W1691962711 cites W2070769602 @default.
- W1691962711 cites W2075593434 @default.
- W1691962711 cites W2084277209 @default.
- W1691962711 cites W2095727900 @default.
- W1691962711 cites W2135771050 @default.
- W1691962711 cites W2148714802 @default.
- W1691962711 cites W2152526563 @default.
- W1691962711 cites W2158969303 @default.
- W1691962711 cites W2373744349 @default.
- W1691962711 doi "https://doi.org/10.1016/j.procs.2015.08.086" @default.
- W1691962711 hasPublicationYear "2015" @default.
- W1691962711 type Work @default.
- W1691962711 sameAs 1691962711 @default.
- W1691962711 citedByCount "9" @default.
- W1691962711 countsByYear W16919627112017 @default.
- W1691962711 countsByYear W16919627112018 @default.
- W1691962711 countsByYear W16919627112020 @default.
- W1691962711 countsByYear W16919627112021 @default.
- W1691962711 countsByYear W16919627112022 @default.
- W1691962711 countsByYear W16919627112023 @default.
- W1691962711 crossrefType "journal-article" @default.
- W1691962711 hasAuthorship W1691962711A5008016410 @default.
- W1691962711 hasAuthorship W1691962711A5026567808 @default.
- W1691962711 hasAuthorship W1691962711A5091302431 @default.
- W1691962711 hasBestOaLocation W16919627111 @default.
- W1691962711 hasConcept C116834253 @default.
- W1691962711 hasConcept C119857082 @default.
- W1691962711 hasConcept C124101348 @default.
- W1691962711 hasConcept C127313418 @default.
- W1691962711 hasConcept C134342201 @default.
- W1691962711 hasConcept C153180895 @default.
- W1691962711 hasConcept C154945302 @default.
- W1691962711 hasConcept C165205528 @default.
- W1691962711 hasConcept C175202392 @default.
- W1691962711 hasConcept C175551986 @default.
- W1691962711 hasConcept C41008148 @default.
- W1691962711 hasConcept C49937458 @default.
- W1691962711 hasConcept C50644808 @default.
- W1691962711 hasConcept C59822182 @default.
- W1691962711 hasConcept C86803240 @default.
- W1691962711 hasConceptScore W1691962711C116834253 @default.
- W1691962711 hasConceptScore W1691962711C119857082 @default.
- W1691962711 hasConceptScore W1691962711C124101348 @default.
- W1691962711 hasConceptScore W1691962711C127313418 @default.
- W1691962711 hasConceptScore W1691962711C134342201 @default.
- W1691962711 hasConceptScore W1691962711C153180895 @default.
- W1691962711 hasConceptScore W1691962711C154945302 @default.
- W1691962711 hasConceptScore W1691962711C165205528 @default.
- W1691962711 hasConceptScore W1691962711C175202392 @default.
- W1691962711 hasConceptScore W1691962711C175551986 @default.
- W1691962711 hasConceptScore W1691962711C41008148 @default.
- W1691962711 hasConceptScore W1691962711C49937458 @default.
- W1691962711 hasConceptScore W1691962711C50644808 @default.
- W1691962711 hasConceptScore W1691962711C59822182 @default.
- W1691962711 hasConceptScore W1691962711C86803240 @default.
- W1691962711 hasLocation W16919627111 @default.
- W1691962711 hasOpenAccess W1691962711 @default.
- W1691962711 hasPrimaryLocation W16919627111 @default.
- W1691962711 hasRelatedWork W1975643538 @default.
- W1691962711 hasRelatedWork W2048220287 @default.
- W1691962711 hasRelatedWork W2067837718 @default.
- W1691962711 hasRelatedWork W2355754418 @default.
- W1691962711 hasRelatedWork W2355766745 @default.
- W1691962711 hasRelatedWork W2365149239 @default.
- W1691962711 hasRelatedWork W2368647976 @default.
- W1691962711 hasRelatedWork W2381770184 @default.
- W1691962711 hasRelatedWork W2385283308 @default.
- W1691962711 hasRelatedWork W2388637280 @default.
- W1691962711 hasVolume "58" @default.
- W1691962711 isParatext "false" @default.
- W1691962711 isRetracted "false" @default.
- W1691962711 magId "1691962711" @default.
- W1691962711 workType "article" @default.