Matches in SemOpenAlex for { <https://semopenalex.org/work/W1692852022> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1692852022 endingPage "34" @default.
- W1692852022 startingPage "25" @default.
- W1692852022 abstract "This paper uses a combination of Geographic Information Systems (GIS) and corpus linguistic analysis to extract and analyse disease related keywords from the Registrar-General's Decennial Supplements. Combined with known mortality figures, this provides, for the first time, a spatial picture of the relationship between the Registrar-General's discussion of disease and deaths in England and Wales in the nineteenth and early twentieth centuries. Techniques such as collocation, density analysis, the Hierarchical Regional Settlement matrix and regression analysis are employed to extract and analyse the data resulting in new insight into the relationship between the Registrar-General's published texts and the changing mortality patterns during this time." @default.
- W1692852022 created "2016-06-24" @default.
- W1692852022 creator A5013635358 @default.
- W1692852022 creator A5042661007 @default.
- W1692852022 creator A5080702364 @default.
- W1692852022 date "2015-11-01" @default.
- W1692852022 modified "2023-10-03" @default.
- W1692852022 title "Geographical Text Analysis: A new approach to understanding nineteenth-century mortality" @default.
- W1692852022 cites W1696340651 @default.
- W1692852022 cites W1990665746 @default.
- W1692852022 cites W2003094793 @default.
- W1692852022 cites W2032348705 @default.
- W1692852022 cites W2045218049 @default.
- W1692852022 cites W2050716480 @default.
- W1692852022 cites W2051164083 @default.
- W1692852022 cites W2089736510 @default.
- W1692852022 cites W2095503871 @default.
- W1692852022 cites W2120154746 @default.
- W1692852022 doi "https://doi.org/10.1016/j.healthplace.2015.08.010" @default.
- W1692852022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26369994" @default.
- W1692852022 hasPublicationYear "2015" @default.
- W1692852022 type Work @default.
- W1692852022 sameAs 1692852022 @default.
- W1692852022 citedByCount "16" @default.
- W1692852022 countsByYear W16928520222017 @default.
- W1692852022 countsByYear W16928520222018 @default.
- W1692852022 countsByYear W16928520222019 @default.
- W1692852022 countsByYear W16928520222020 @default.
- W1692852022 countsByYear W16928520222022 @default.
- W1692852022 countsByYear W16928520222023 @default.
- W1692852022 crossrefType "journal-article" @default.
- W1692852022 hasAuthorship W1692852022A5013635358 @default.
- W1692852022 hasAuthorship W1692852022A5042661007 @default.
- W1692852022 hasAuthorship W1692852022A5080702364 @default.
- W1692852022 hasBestOaLocation W16928520222 @default.
- W1692852022 hasConcept C105795698 @default.
- W1692852022 hasConcept C136764020 @default.
- W1692852022 hasConcept C144024400 @default.
- W1692852022 hasConcept C145097563 @default.
- W1692852022 hasConcept C148383697 @default.
- W1692852022 hasConcept C149923435 @default.
- W1692852022 hasConcept C152877465 @default.
- W1692852022 hasConcept C205649164 @default.
- W1692852022 hasConcept C2777063073 @default.
- W1692852022 hasConcept C33923547 @default.
- W1692852022 hasConcept C41008148 @default.
- W1692852022 hasConcept C41856607 @default.
- W1692852022 hasConcept C53553401 @default.
- W1692852022 hasConcept C58640448 @default.
- W1692852022 hasConcept C62649853 @default.
- W1692852022 hasConcept C80023036 @default.
- W1692852022 hasConcept C95457728 @default.
- W1692852022 hasConceptScore W1692852022C105795698 @default.
- W1692852022 hasConceptScore W1692852022C136764020 @default.
- W1692852022 hasConceptScore W1692852022C144024400 @default.
- W1692852022 hasConceptScore W1692852022C145097563 @default.
- W1692852022 hasConceptScore W1692852022C148383697 @default.
- W1692852022 hasConceptScore W1692852022C149923435 @default.
- W1692852022 hasConceptScore W1692852022C152877465 @default.
- W1692852022 hasConceptScore W1692852022C205649164 @default.
- W1692852022 hasConceptScore W1692852022C2777063073 @default.
- W1692852022 hasConceptScore W1692852022C33923547 @default.
- W1692852022 hasConceptScore W1692852022C41008148 @default.
- W1692852022 hasConceptScore W1692852022C41856607 @default.
- W1692852022 hasConceptScore W1692852022C53553401 @default.
- W1692852022 hasConceptScore W1692852022C58640448 @default.
- W1692852022 hasConceptScore W1692852022C62649853 @default.
- W1692852022 hasConceptScore W1692852022C80023036 @default.
- W1692852022 hasConceptScore W1692852022C95457728 @default.
- W1692852022 hasFunder F4320334678 @default.
- W1692852022 hasLocation W16928520221 @default.
- W1692852022 hasLocation W16928520222 @default.
- W1692852022 hasLocation W16928520223 @default.
- W1692852022 hasOpenAccess W1692852022 @default.
- W1692852022 hasPrimaryLocation W16928520221 @default.
- W1692852022 hasRelatedWork W1751329458 @default.
- W1692852022 hasRelatedWork W1985534252 @default.
- W1692852022 hasRelatedWork W2358345829 @default.
- W1692852022 hasRelatedWork W2476303228 @default.
- W1692852022 hasRelatedWork W2505806286 @default.
- W1692852022 hasRelatedWork W2605973477 @default.
- W1692852022 hasRelatedWork W2898158658 @default.
- W1692852022 hasRelatedWork W2899084033 @default.
- W1692852022 hasRelatedWork W2913986275 @default.
- W1692852022 hasRelatedWork W3087191407 @default.
- W1692852022 hasVolume "36" @default.
- W1692852022 isParatext "false" @default.
- W1692852022 isRetracted "false" @default.
- W1692852022 magId "1692852022" @default.
- W1692852022 workType "article" @default.