Matches in SemOpenAlex for { <https://semopenalex.org/work/W169402605> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W169402605 endingPage "1204" @default.
- W169402605 startingPage "1197" @default.
- W169402605 abstract "Neural networks have been used in a number of robotic applications (Das & Kar, 2006; Fierro & Lewis, 1998), including both manipulators and mobile robots. A typical approach is to use neural networks for nonlinear system modelling, including for instance the learning of forward and inverse models of a plant, noise cancellation, and other forms of nonlinear control (Fierro & Lewis, 1998). An alternative approach is to solve a particular problem by designing a specialized neural network architecture and/or learning rule (Sutton & Barto, 1981). It is clear that biological brains, though exhibiting a certain degree of homogeneity, rely on many specialized circuits designed to solve particular problems. We are interested in understanding how animals are able to solve complex problems such as learning to navigate in an unknown environment, with the aim of applying what is learned of biology to the control of robots (Chang & Gaudiano, 1998; Martínez-Marín, 2007; Montes-González, Santos-Reyes & Ríos- Figueroa, 2006). In particular, this article presents a neural architecture that makes possible the integration of a kinematical adaptive neuro-controller for trajectory tracking and an obstacle avoidance adaptive neuro-controller for nonholonomic mobile robots. The kinematical adaptive neuro-controller is a real-time, unsupervised neural network that learns to control a nonholonomic mobile robot in a nonstationary environment, which is termed Self-Organization Direction Mapping Network (SODMN), and combines associative learning and Vector Associative Map (VAM) learning to generate transformations between spatial and velocity coordinates (García-Córdova, Guerrero-González & García-Marín, 2007). The transformations are learned in an unsupervised training phase, during which the robot moves as a result of randomly selected wheel velocities. The obstacle avoidance adaptive neurocontroller is a neural network that learns to control avoidance behaviours in a mobile robot based on a form of animal learning known as operant conditioning. Learning, which requires no supervision, takes place as the robot moves around a cluttered environment with obstacles. The neural network requires no knowledge of the geometry of the robot or of the quality, number, or configuration of the robot’s sensors. The efficacy of the proposed neural architecture is tested experimentally by a differentially driven mobile robot." @default.
- W169402605 created "2016-06-24" @default.
- W169402605 creator A5013873642 @default.
- W169402605 creator A5031281373 @default.
- W169402605 creator A5083540414 @default.
- W169402605 date "2011-05-24" @default.
- W169402605 modified "2023-10-01" @default.
- W169402605 title "Neural Control System for Autonomous Vehicles" @default.
- W169402605 cites W1505087413 @default.
- W169402605 cites W1545277970 @default.
- W169402605 cites W1546367491 @default.
- W169402605 cites W1548422492 @default.
- W169402605 cites W2001449804 @default.
- W169402605 cites W2028044548 @default.
- W169402605 cites W2040598998 @default.
- W169402605 cites W2057303784 @default.
- W169402605 cites W2069612046 @default.
- W169402605 cites W2081651104 @default.
- W169402605 cites W2121292733 @default.
- W169402605 cites W2122561468 @default.
- W169402605 cites W2161532993 @default.
- W169402605 cites W2162726844 @default.
- W169402605 cites W2169003662 @default.
- W169402605 doi "https://doi.org/10.4018/978-1-59904-849-9.ch175" @default.
- W169402605 hasPublicationYear "2011" @default.
- W169402605 type Work @default.
- W169402605 sameAs 169402605 @default.
- W169402605 citedByCount "0" @default.
- W169402605 crossrefType "book-chapter" @default.
- W169402605 hasAuthorship W169402605A5013873642 @default.
- W169402605 hasAuthorship W169402605A5031281373 @default.
- W169402605 hasAuthorship W169402605A5083540414 @default.
- W169402605 hasConcept C154945302 @default.
- W169402605 hasConcept C169760540 @default.
- W169402605 hasConcept C2775924081 @default.
- W169402605 hasConcept C2986949344 @default.
- W169402605 hasConcept C41008148 @default.
- W169402605 hasConcept C86803240 @default.
- W169402605 hasConceptScore W169402605C154945302 @default.
- W169402605 hasConceptScore W169402605C169760540 @default.
- W169402605 hasConceptScore W169402605C2775924081 @default.
- W169402605 hasConceptScore W169402605C2986949344 @default.
- W169402605 hasConceptScore W169402605C41008148 @default.
- W169402605 hasConceptScore W169402605C86803240 @default.
- W169402605 hasLocation W1694026051 @default.
- W169402605 hasOpenAccess W169402605 @default.
- W169402605 hasPrimaryLocation W1694026051 @default.
- W169402605 hasRelatedWork W1838608104 @default.
- W169402605 hasRelatedWork W2065825137 @default.
- W169402605 hasRelatedWork W2070975878 @default.
- W169402605 hasRelatedWork W2072509319 @default.
- W169402605 hasRelatedWork W2329523594 @default.
- W169402605 hasRelatedWork W2480466982 @default.
- W169402605 hasRelatedWork W2486292481 @default.
- W169402605 hasRelatedWork W2563424206 @default.
- W169402605 hasRelatedWork W2588175248 @default.
- W169402605 hasRelatedWork W2782730656 @default.
- W169402605 hasRelatedWork W2904280197 @default.
- W169402605 hasRelatedWork W2907951794 @default.
- W169402605 hasRelatedWork W2955180568 @default.
- W169402605 hasRelatedWork W3040346715 @default.
- W169402605 hasRelatedWork W3109421890 @default.
- W169402605 hasRelatedWork W3139763303 @default.
- W169402605 hasRelatedWork W3146533129 @default.
- W169402605 hasRelatedWork W587664564 @default.
- W169402605 hasRelatedWork W2152493749 @default.
- W169402605 hasRelatedWork W2512408725 @default.
- W169402605 isParatext "false" @default.
- W169402605 isRetracted "false" @default.
- W169402605 magId "169402605" @default.
- W169402605 workType "book-chapter" @default.