Matches in SemOpenAlex for { <https://semopenalex.org/work/W1696305814> ?p ?o ?g. }
- W1696305814 endingPage "10" @default.
- W1696305814 startingPage "1" @default.
- W1696305814 abstract "Land use and land cover (LULC) mapping in urban areas is one of the core applications in remote sensing, and it plays an important role in modern urban planning and management. Deep learning is springing up in the field of machine learning recently. By mimicking the hierarchical structure of the human brain, deep learning can gradually extract features from lower level to higher level. The Deep Belief Networks (DBN) model is a widely investigated and deployed deep learning architecture. It combines the advantages of unsupervised and supervised learning and can archive good classification performance. This study proposes a classification approach based on the DBN model for detailed urban mapping using polarimetric synthetic aperture radar (PolSAR) data. Through the DBN model, effective contextual mapping features can be automatically extracted from the PolSAR data to improve the classification performance. Two-date high-resolution RADARSAT-2 PolSAR data over the Great Toronto Area were used for evaluation. Comparisons with the support vector machine (SVM), conventional neural networks (NN), and stochastic Expectation-Maximization (SEM) were conducted to assess the potential of the DBN-based classification approach. Experimental results show that the DBN-based method outperforms three other approaches and produces homogenous mapping results with preserved shape details." @default.
- W1696305814 created "2016-06-24" @default.
- W1696305814 creator A5019398608 @default.
- W1696305814 creator A5037717179 @default.
- W1696305814 creator A5039214810 @default.
- W1696305814 creator A5051680867 @default.
- W1696305814 creator A5080922165 @default.
- W1696305814 creator A5090297072 @default.
- W1696305814 date "2015-01-01" @default.
- W1696305814 modified "2023-10-16" @default.
- W1696305814 title "Urban Land Use and Land Cover Classification Using Remotely Sensed SAR Data through Deep Belief Networks" @default.
- W1696305814 cites W1806891645 @default.
- W1696305814 cites W1965362766 @default.
- W1696305814 cites W1966184253 @default.
- W1696305814 cites W1974141535 @default.
- W1696305814 cites W1982974532 @default.
- W1696305814 cites W1984082165 @default.
- W1696305814 cites W1984792953 @default.
- W1696305814 cites W1985470195 @default.
- W1696305814 cites W1998399571 @default.
- W1696305814 cites W2005697477 @default.
- W1696305814 cites W2019779527 @default.
- W1696305814 cites W2024807719 @default.
- W1696305814 cites W2035596087 @default.
- W1696305814 cites W2061240006 @default.
- W1696305814 cites W2064630666 @default.
- W1696305814 cites W2073842936 @default.
- W1696305814 cites W2079299474 @default.
- W1696305814 cites W2089391573 @default.
- W1696305814 cites W2093866254 @default.
- W1696305814 cites W2094529052 @default.
- W1696305814 cites W2095595743 @default.
- W1696305814 cites W2096349624 @default.
- W1696305814 cites W2100495367 @default.
- W1696305814 cites W2102496661 @default.
- W1696305814 cites W2111300010 @default.
- W1696305814 cites W2111758425 @default.
- W1696305814 cites W2112803241 @default.
- W1696305814 cites W2116064496 @default.
- W1696305814 cites W2119879130 @default.
- W1696305814 cites W2136922672 @default.
- W1696305814 cites W2138759894 @default.
- W1696305814 cites W2144554203 @default.
- W1696305814 cites W2153635508 @default.
- W1696305814 cites W2163922914 @default.
- W1696305814 cites W4231109964 @default.
- W1696305814 doi "https://doi.org/10.1155/2015/538063" @default.
- W1696305814 hasPublicationYear "2015" @default.
- W1696305814 type Work @default.
- W1696305814 sameAs 1696305814 @default.
- W1696305814 citedByCount "84" @default.
- W1696305814 countsByYear W16963058142016 @default.
- W1696305814 countsByYear W16963058142017 @default.
- W1696305814 countsByYear W16963058142018 @default.
- W1696305814 countsByYear W16963058142019 @default.
- W1696305814 countsByYear W16963058142020 @default.
- W1696305814 countsByYear W16963058142021 @default.
- W1696305814 countsByYear W16963058142022 @default.
- W1696305814 countsByYear W16963058142023 @default.
- W1696305814 crossrefType "journal-article" @default.
- W1696305814 hasAuthorship W1696305814A5019398608 @default.
- W1696305814 hasAuthorship W1696305814A5037717179 @default.
- W1696305814 hasAuthorship W1696305814A5039214810 @default.
- W1696305814 hasAuthorship W1696305814A5051680867 @default.
- W1696305814 hasAuthorship W1696305814A5080922165 @default.
- W1696305814 hasAuthorship W1696305814A5090297072 @default.
- W1696305814 hasBestOaLocation W16963058141 @default.
- W1696305814 hasConcept C108583219 @default.
- W1696305814 hasConcept C119857082 @default.
- W1696305814 hasConcept C12267149 @default.
- W1696305814 hasConcept C127413603 @default.
- W1696305814 hasConcept C147176958 @default.
- W1696305814 hasConcept C153180895 @default.
- W1696305814 hasConcept C154945302 @default.
- W1696305814 hasConcept C202444582 @default.
- W1696305814 hasConcept C205649164 @default.
- W1696305814 hasConcept C2780648208 @default.
- W1696305814 hasConcept C33923547 @default.
- W1696305814 hasConcept C41008148 @default.
- W1696305814 hasConcept C4792198 @default.
- W1696305814 hasConcept C50644808 @default.
- W1696305814 hasConcept C62649853 @default.
- W1696305814 hasConcept C87360688 @default.
- W1696305814 hasConcept C9652623 @default.
- W1696305814 hasConcept C97385483 @default.
- W1696305814 hasConceptScore W1696305814C108583219 @default.
- W1696305814 hasConceptScore W1696305814C119857082 @default.
- W1696305814 hasConceptScore W1696305814C12267149 @default.
- W1696305814 hasConceptScore W1696305814C127413603 @default.
- W1696305814 hasConceptScore W1696305814C147176958 @default.
- W1696305814 hasConceptScore W1696305814C153180895 @default.
- W1696305814 hasConceptScore W1696305814C154945302 @default.
- W1696305814 hasConceptScore W1696305814C202444582 @default.
- W1696305814 hasConceptScore W1696305814C205649164 @default.
- W1696305814 hasConceptScore W1696305814C2780648208 @default.
- W1696305814 hasConceptScore W1696305814C33923547 @default.
- W1696305814 hasConceptScore W1696305814C41008148 @default.
- W1696305814 hasConceptScore W1696305814C4792198 @default.