Matches in SemOpenAlex for { <https://semopenalex.org/work/W1696607918> ?p ?o ?g. }
- W1696607918 abstract "Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images.In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l 1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm.Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods.The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented Lagrangian method provides solutions fully complying to the composite regularization reconstruction model with fast convergence speed." @default.
- W1696607918 created "2016-06-24" @default.
- W1696607918 creator A5023953415 @default.
- W1696607918 creator A5042455990 @default.
- W1696607918 creator A5058413200 @default.
- W1696607918 creator A5075365209 @default.
- W1696607918 creator A5088823957 @default.
- W1696607918 date "2015-08-08" @default.
- W1696607918 modified "2023-10-08" @default.
- W1696607918 title "Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain" @default.
- W1696607918 cites W1497904071 @default.
- W1696607918 cites W1964641132 @default.
- W1696607918 cites W1973532239 @default.
- W1696607918 cites W1978418556 @default.
- W1696607918 cites W1979954835 @default.
- W1696607918 cites W1983793191 @default.
- W1696607918 cites W2000853557 @default.
- W1696607918 cites W2004544971 @default.
- W1696607918 cites W2011710850 @default.
- W1696607918 cites W2013561127 @default.
- W1696607918 cites W2021942040 @default.
- W1696607918 cites W2028781966 @default.
- W1696607918 cites W2029816571 @default.
- W1696607918 cites W2036257748 @default.
- W1696607918 cites W2041883052 @default.
- W1696607918 cites W2042965174 @default.
- W1696607918 cites W2056370875 @default.
- W1696607918 cites W2058532290 @default.
- W1696607918 cites W2069912449 @default.
- W1696607918 cites W2070877735 @default.
- W1696607918 cites W2079929986 @default.
- W1696607918 cites W2093621384 @default.
- W1696607918 cites W2099321050 @default.
- W1696607918 cites W2100705753 @default.
- W1696607918 cites W2101675075 @default.
- W1696607918 cites W2104262387 @default.
- W1696607918 cites W2104266187 @default.
- W1696607918 cites W2105877514 @default.
- W1696607918 cites W2106002835 @default.
- W1696607918 cites W2106005123 @default.
- W1696607918 cites W2107906890 @default.
- W1696607918 cites W2115528090 @default.
- W1696607918 cites W2117700900 @default.
- W1696607918 cites W2117853853 @default.
- W1696607918 cites W2117881455 @default.
- W1696607918 cites W2132122471 @default.
- W1696607918 cites W2135660950 @default.
- W1696607918 cites W2140499889 @default.
- W1696607918 cites W2140878114 @default.
- W1696607918 cites W2141168890 @default.
- W1696607918 cites W2145096794 @default.
- W1696607918 cites W2152956463 @default.
- W1696607918 cites W2153663612 @default.
- W1696607918 cites W2160547390 @default.
- W1696607918 cites W2163973643 @default.
- W1696607918 cites W2165142794 @default.
- W1696607918 cites W2168668658 @default.
- W1696607918 cites W2168903001 @default.
- W1696607918 cites W2949483514 @default.
- W1696607918 cites W3106359998 @default.
- W1696607918 cites W4250955649 @default.
- W1696607918 doi "https://doi.org/10.1186/s12880-015-0065-0" @default.
- W1696607918 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4528851" @default.
- W1696607918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26253135" @default.
- W1696607918 hasPublicationYear "2015" @default.
- W1696607918 type Work @default.
- W1696607918 sameAs 1696607918 @default.
- W1696607918 citedByCount "9" @default.
- W1696607918 countsByYear W16966079182017 @default.
- W1696607918 countsByYear W16966079182018 @default.
- W1696607918 countsByYear W16966079182019 @default.
- W1696607918 countsByYear W16966079182021 @default.
- W1696607918 crossrefType "journal-article" @default.
- W1696607918 hasAuthorship W1696607918A5023953415 @default.
- W1696607918 hasAuthorship W1696607918A5042455990 @default.
- W1696607918 hasAuthorship W1696607918A5058413200 @default.
- W1696607918 hasAuthorship W1696607918A5075365209 @default.
- W1696607918 hasAuthorship W1696607918A5088823957 @default.
- W1696607918 hasBestOaLocation W16966079181 @default.
- W1696607918 hasConcept C102519508 @default.
- W1696607918 hasConcept C11413529 @default.
- W1696607918 hasConcept C124066611 @default.
- W1696607918 hasConcept C124851039 @default.
- W1696607918 hasConcept C131720326 @default.
- W1696607918 hasConcept C134306372 @default.
- W1696607918 hasConcept C141379421 @default.
- W1696607918 hasConcept C150452318 @default.
- W1696607918 hasConcept C153180895 @default.
- W1696607918 hasConcept C154945302 @default.
- W1696607918 hasConcept C196216189 @default.
- W1696607918 hasConcept C197413143 @default.
- W1696607918 hasConcept C2776135515 @default.
- W1696607918 hasConcept C33923547 @default.
- W1696607918 hasConcept C41008148 @default.
- W1696607918 hasConcept C47432892 @default.
- W1696607918 hasConceptScore W1696607918C102519508 @default.
- W1696607918 hasConceptScore W1696607918C11413529 @default.
- W1696607918 hasConceptScore W1696607918C124066611 @default.
- W1696607918 hasConceptScore W1696607918C124851039 @default.
- W1696607918 hasConceptScore W1696607918C131720326 @default.