Matches in SemOpenAlex for { <https://semopenalex.org/work/W170400963> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W170400963 endingPage "2023" @default.
- W170400963 startingPage "2019" @default.
- W170400963 abstract "One of the most important and challenging problems in current Data Mining research is the definition of the prior knowledge that can be originated from the process or the domain. This contextual information may help select the appropriate information, features or techniques, decrease the space of hypotheses, represent the output in a most comprehensible way and improve the process. Ontological foundation is a precondition for efficient automated usage of such information (Chandrasekaran et al., 1999). An ontology is a formal explicit specification of a shared conceptualization for a domain of interest (Gruber, 1993). Among other things, this definition emphasizes the fact that an ontology has to be specified in a language that comes with a formal semantics. Due to this formalization ontologies provide the machine interpretable meaning of concepts and relations that is expected when using a semantic-based approach (Staab & Studer, 2004). In its most prevalent use in Artificial Intelligence (AI), an ontology refers to an engineering artifact (more precisely, produced according to the principles of Ontological Engineering (Gómez-Pérez et al., 2004)), constituted by a specific vocabulary used to describe a certain reality, plus a set of explicit assumptions regarding the intended meaning of the vocabulary words. This set of assumptions has usually the form of a First-Order Logic (FOL) theory, where vocabulary words appear as unary or binary predicate names, respectively called concepts and relations. In the simplest case, an ontology describes a hierarchy of concepts related by subsumption relationships; in more sophisticated cases, suitable axioms are added in order to express other relationships between concepts and to constrain their intended interpretation. Ontologies can play several roles in Data Mining (Nigro et al., 2007). In this chapter we investigate the use of ontologies as prior knowledge in Data Mining. As an illustrative case throughout the chapter, we choose the task of Frequent Pattern Discovery, it being the most representative product of the cross-fertilization among Databases, Machine Learning and Statistics that has given rise to Data Mining. Indeed it is central to an entire class of descriptive tasks in Data Mining among which Association Rule Mining (Agrawal et al., 1993; Agrawal & Srikant, 1994) is the most popular. A pattern is considered as an intensional description (expressed in a given language L) of a subset of a data set r. The support of a pattern is the relative frequency of the pattern within r and is computed with the evaluation function supp. The task of Frequent Pattern Discovery aims at the extraction of all frequent patterns, i.e. all patterns whose support exceeds a user-defined threshold of minimum support. The blueprint of most algorithms for Frequent Pattern Discovery is the levelwise search (Mannila & Toivonen, 1997). It is based on the following assumption: If a generality order = for the language L of patterns can be found such that = is monotonic w.r.t. supp, then the resulting space (L, =) can be searched breadth-first by starting from the most general pattern in L and alternating candidate generation and candidate evaluation phases." @default.
- W170400963 created "2016-06-24" @default.
- W170400963 creator A5079129060 @default.
- W170400963 date "2011-05-24" @default.
- W170400963 modified "2023-09-27" @default.
- W170400963 title "Using Prior Knowledge in Data Mining" @default.
- W170400963 cites W102908181 @default.
- W170400963 cites W1495384623 @default.
- W170400963 cites W1509428113 @default.
- W170400963 cites W1529522905 @default.
- W170400963 cites W1555563750 @default.
- W170400963 cites W1587067956 @default.
- W170400963 cites W1990890881 @default.
- W170400963 cites W2040667967 @default.
- W170400963 cites W2103103282 @default.
- W170400963 cites W2113243831 @default.
- W170400963 cites W2113445341 @default.
- W170400963 cites W2114244337 @default.
- W170400963 cites W2125227861 @default.
- W170400963 cites W2134197825 @default.
- W170400963 cites W2137079713 @default.
- W170400963 cites W2145465694 @default.
- W170400963 cites W2166559705 @default.
- W170400963 cites W4206727053 @default.
- W170400963 cites W4239696231 @default.
- W170400963 cites W4255991504 @default.
- W170400963 doi "https://doi.org/10.4018/978-1-60566-010-3.ch308" @default.
- W170400963 hasPublicationYear "2011" @default.
- W170400963 type Work @default.
- W170400963 sameAs 170400963 @default.
- W170400963 citedByCount "0" @default.
- W170400963 crossrefType "book-chapter" @default.
- W170400963 hasAuthorship W170400963A5079129060 @default.
- W170400963 hasConcept C124101348 @default.
- W170400963 hasConcept C2522767166 @default.
- W170400963 hasConcept C41008148 @default.
- W170400963 hasConceptScore W170400963C124101348 @default.
- W170400963 hasConceptScore W170400963C2522767166 @default.
- W170400963 hasConceptScore W170400963C41008148 @default.
- W170400963 hasLocation W1704009631 @default.
- W170400963 hasOpenAccess W170400963 @default.
- W170400963 hasPrimaryLocation W1704009631 @default.
- W170400963 hasRelatedWork W103453178 @default.
- W170400963 hasRelatedWork W111782844 @default.
- W170400963 hasRelatedWork W148982944 @default.
- W170400963 hasRelatedWork W1521854962 @default.
- W170400963 hasRelatedWork W1555357698 @default.
- W170400963 hasRelatedWork W1629572354 @default.
- W170400963 hasRelatedWork W2002386323 @default.
- W170400963 hasRelatedWork W2092774652 @default.
- W170400963 hasRelatedWork W2102529064 @default.
- W170400963 hasRelatedWork W2105533082 @default.
- W170400963 hasRelatedWork W2107703535 @default.
- W170400963 hasRelatedWork W2111624714 @default.
- W170400963 hasRelatedWork W2113967606 @default.
- W170400963 hasRelatedWork W2119664304 @default.
- W170400963 hasRelatedWork W2146285134 @default.
- W170400963 hasRelatedWork W2156611293 @default.
- W170400963 hasRelatedWork W2240544104 @default.
- W170400963 hasRelatedWork W2964534427 @default.
- W170400963 hasRelatedWork W3149749041 @default.
- W170400963 hasRelatedWork W90320972 @default.
- W170400963 isParatext "false" @default.
- W170400963 isRetracted "false" @default.
- W170400963 magId "170400963" @default.
- W170400963 workType "book-chapter" @default.