Matches in SemOpenAlex for { <https://semopenalex.org/work/W170739039> ?p ?o ?g. }
- W170739039 endingPage "25" @default.
- W170739039 startingPage "13" @default.
- W170739039 abstract "A mathematical model is presented that could be used to describe the dynamic behavior, scale-up, and design of monoliths involving the adsorption of a solute of interest. The value of the pore diffusivity of the solute in the pores of the skeletons of the monolith is determined in an a priori manner by employing the pore network modeling theory of Meyers and Liapis [J. Chromatogr. A, 827 (1998) 197 and 852 (1999) 3]. The results clearly show that the pore diffusion coefficient, Dmp, of the solute depends on both the pore size distribution and the pore connectivity, nT, of the pores in the skeletons. It is shown that, for a given type of monolith, the film mass transfer coefficient, Kf, of the solute in the monolith could be determined from experiments based on Eq. (3) which was derived by Liapis [Math. Modelling Sci. Comput., 1 (1993) 397] from the fundamental physics. The mathematical model presented in this work is numerically solved in order to study the dynamic behavior of the adsorption of bovine serum albumin (BSA) in a monolith having skeletons of radius r(o) = 0.75x10(-6) m and through-pores having diameters of 1.5x10(-6)-1.8x10(-6) m [H. Minakuchi et al., J. Chromatogr. A, 762 (1997) 135]. The breakthrough curves of the BSA obtained from the monolith were steeper than those from columns packed with porous spherical particles whose radii ranged from 2.50x10(-6) m to 15.00x10(-6) m. Furthermore, and most importantly, the dynamic adsorptive capacity of the monolith was always greater than that of the packed beds for all values of the superficial fluid velocity, Vtp. The results of this work indicate that since in monoliths the size of through-pores could be controlled independently from the size of the skeletons, then if one could construct monolith structures having (a) relatively large through-pores with high through-pore connectivity that can provide high flow-rates at low pressure drops and (b) small-sized skeletons with mesopores having an appropriate pore size distribution (mesopores having diameters that are relatively large when compared with the diameter of the diffusing solute) and high pore connectivity, nT, the following positive results, which are necessary for obtaining efficient separations, could be realized: (i) the value of the pore diffusion coefficient, Dmp, of the solute would be large, (ii) the diffusion path length in the skeletons would be short, (iii) the diffusion velocity, vD, would be high, and (iv) the diffusional response time, t(drt), would be small. Monoliths with such pore structures could provide more efficient separations with respect to (a) dynamic adsorptive capacity and (b) required pressure drop for a given flow-rate, than columns packed with porous particles." @default.
- W170739039 created "2016-06-24" @default.
- W170739039 creator A5029783060 @default.
- W170739039 creator A5055387827 @default.
- W170739039 creator A5091610645 @default.
- W170739039 date "1999-12-01" @default.
- W170739039 modified "2023-09-24" @default.
- W170739039 title "Modeling and simulation of the dynamic behavior of monoliths" @default.
- W170739039 cites W1533470994 @default.
- W170739039 cites W1549892164 @default.
- W170739039 cites W1981737753 @default.
- W170739039 cites W1984687762 @default.
- W170739039 cites W1997003260 @default.
- W170739039 cites W1998482090 @default.
- W170739039 cites W2001571626 @default.
- W170739039 cites W2009137806 @default.
- W170739039 cites W2009232111 @default.
- W170739039 cites W2009978824 @default.
- W170739039 cites W2015725637 @default.
- W170739039 cites W2016685487 @default.
- W170739039 cites W2021720267 @default.
- W170739039 cites W2024182065 @default.
- W170739039 cites W2028335230 @default.
- W170739039 cites W2030001082 @default.
- W170739039 cites W2036012549 @default.
- W170739039 cites W2036084382 @default.
- W170739039 cites W2039125739 @default.
- W170739039 cites W2042399670 @default.
- W170739039 cites W2042770352 @default.
- W170739039 cites W2046892424 @default.
- W170739039 cites W2049635088 @default.
- W170739039 cites W2053680865 @default.
- W170739039 cites W2057662494 @default.
- W170739039 cites W2057805390 @default.
- W170739039 cites W2058420615 @default.
- W170739039 cites W2059995265 @default.
- W170739039 cites W2060518285 @default.
- W170739039 cites W2061606846 @default.
- W170739039 cites W2066478308 @default.
- W170739039 cites W2067518100 @default.
- W170739039 cites W2070457128 @default.
- W170739039 cites W2073565320 @default.
- W170739039 cites W2079049536 @default.
- W170739039 cites W2091226635 @default.
- W170739039 cites W2117208263 @default.
- W170739039 cites W2123012409 @default.
- W170739039 cites W2156333473 @default.
- W170739039 cites W2749776293 @default.
- W170739039 cites W39534245 @default.
- W170739039 doi "https://doi.org/10.1016/s0021-9673(99)01031-6" @default.
- W170739039 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10674927" @default.
- W170739039 hasPublicationYear "1999" @default.
- W170739039 type Work @default.
- W170739039 sameAs 170739039 @default.
- W170739039 citedByCount "85" @default.
- W170739039 countsByYear W1707390392012 @default.
- W170739039 countsByYear W1707390392013 @default.
- W170739039 countsByYear W1707390392014 @default.
- W170739039 countsByYear W1707390392016 @default.
- W170739039 countsByYear W1707390392017 @default.
- W170739039 countsByYear W1707390392018 @default.
- W170739039 countsByYear W1707390392019 @default.
- W170739039 countsByYear W1707390392021 @default.
- W170739039 crossrefType "journal-article" @default.
- W170739039 hasAuthorship W170739039A5029783060 @default.
- W170739039 hasAuthorship W170739039A5055387827 @default.
- W170739039 hasAuthorship W170739039A5091610645 @default.
- W170739039 hasConcept C105569014 @default.
- W170739039 hasConcept C113196181 @default.
- W170739039 hasConcept C121332964 @default.
- W170739039 hasConcept C127413603 @default.
- W170739039 hasConcept C147789679 @default.
- W170739039 hasConcept C150394285 @default.
- W170739039 hasConcept C152815550 @default.
- W170739039 hasConcept C161790260 @default.
- W170739039 hasConcept C178635117 @default.
- W170739039 hasConcept C178790620 @default.
- W170739039 hasConcept C185592680 @default.
- W170739039 hasConcept C18762648 @default.
- W170739039 hasConcept C203496682 @default.
- W170739039 hasConcept C2779525144 @default.
- W170739039 hasConcept C37668627 @default.
- W170739039 hasConcept C38652104 @default.
- W170739039 hasConcept C41008148 @default.
- W170739039 hasConcept C42360764 @default.
- W170739039 hasConcept C43617362 @default.
- W170739039 hasConcept C51038369 @default.
- W170739039 hasConcept C6648577 @default.
- W170739039 hasConcept C69357855 @default.
- W170739039 hasConcept C97355855 @default.
- W170739039 hasConceptScore W170739039C105569014 @default.
- W170739039 hasConceptScore W170739039C113196181 @default.
- W170739039 hasConceptScore W170739039C121332964 @default.
- W170739039 hasConceptScore W170739039C127413603 @default.
- W170739039 hasConceptScore W170739039C147789679 @default.
- W170739039 hasConceptScore W170739039C150394285 @default.
- W170739039 hasConceptScore W170739039C152815550 @default.
- W170739039 hasConceptScore W170739039C161790260 @default.