Matches in SemOpenAlex for { <https://semopenalex.org/work/W1710978090> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1710978090 endingPage "390" @default.
- W1710978090 startingPage "385" @default.
- W1710978090 abstract "Automatic heart beats classification has attracted much interest for research recently and we are interested to determine the type of arrhythmia from electrocardiogram (ECG) signal automatically. This paper will discuss a new extension of GLVQ that employ fuzzy logic concept as the discriminant function in order to develop a robust algorithm and improve the classification performance. The overall classification system is comprised of three components including data preprocessing, feature extraction and classification. Data preprocessing related to how the initial data prepared, in this case, we cut the signal beat by beat using R peak as pivot point, while for the feature extraction, we used wavelet algorithm. The ECG signals were obtained from MIT-BIH arrhythmia database. Our experiment showed that our proposed method, FN-GLVQ, was able to increase the accuracy of classifier compared with original GLVQ that used euclidean distance. By using 10-Fold Cross Validation, the algorithm produced an average accuracy 93.36% and 95.52%, respectively for GLVQ and FNGLVQ." @default.
- W1710978090 created "2016-06-24" @default.
- W1710978090 creator A5053926559 @default.
- W1710978090 creator A5063974742 @default.
- W1710978090 creator A5069933043 @default.
- W1710978090 date "2011-12-01" @default.
- W1710978090 modified "2023-10-01" @default.
- W1710978090 title "Arrhytmia classification using Fuzzy-Neuro Generalized Learning Vector Quantization" @default.
- W1710978090 cites W1517349555 @default.
- W1710978090 cites W1559511987 @default.
- W1710978090 cites W1946293154 @default.
- W1710978090 cites W1985375631 @default.
- W1710978090 cites W1990863955 @default.
- W1710978090 cites W1991727042 @default.
- W1710978090 cites W2038141657 @default.
- W1710978090 cites W2047187509 @default.
- W1710978090 cites W2093576325 @default.
- W1710978090 cites W2094853299 @default.
- W1710978090 cites W2106834707 @default.
- W1710978090 cites W2123565895 @default.
- W1710978090 cites W2123749980 @default.
- W1710978090 cites W2125654608 @default.
- W1710978090 cites W2126755905 @default.
- W1710978090 cites W2163430278 @default.
- W1710978090 cites W2169533318 @default.
- W1710978090 cites W2171366262 @default.
- W1710978090 cites W2312663011 @default.
- W1710978090 hasPublicationYear "2011" @default.
- W1710978090 type Work @default.
- W1710978090 sameAs 1710978090 @default.
- W1710978090 citedByCount "15" @default.
- W1710978090 countsByYear W17109780902012 @default.
- W1710978090 countsByYear W17109780902014 @default.
- W1710978090 countsByYear W17109780902015 @default.
- W1710978090 countsByYear W17109780902017 @default.
- W1710978090 countsByYear W17109780902018 @default.
- W1710978090 countsByYear W17109780902019 @default.
- W1710978090 crossrefType "proceedings-article" @default.
- W1710978090 hasAuthorship W1710978090A5053926559 @default.
- W1710978090 hasAuthorship W1710978090A5063974742 @default.
- W1710978090 hasAuthorship W1710978090A5069933043 @default.
- W1710978090 hasConcept C120174047 @default.
- W1710978090 hasConcept C153180895 @default.
- W1710978090 hasConcept C154945302 @default.
- W1710978090 hasConcept C34736171 @default.
- W1710978090 hasConcept C41008148 @default.
- W1710978090 hasConcept C47432892 @default.
- W1710978090 hasConcept C52622490 @default.
- W1710978090 hasConcept C58166 @default.
- W1710978090 hasConcept C95623464 @default.
- W1710978090 hasConceptScore W1710978090C120174047 @default.
- W1710978090 hasConceptScore W1710978090C153180895 @default.
- W1710978090 hasConceptScore W1710978090C154945302 @default.
- W1710978090 hasConceptScore W1710978090C34736171 @default.
- W1710978090 hasConceptScore W1710978090C41008148 @default.
- W1710978090 hasConceptScore W1710978090C47432892 @default.
- W1710978090 hasConceptScore W1710978090C52622490 @default.
- W1710978090 hasConceptScore W1710978090C58166 @default.
- W1710978090 hasConceptScore W1710978090C95623464 @default.
- W1710978090 hasLocation W17109780901 @default.
- W1710978090 hasOpenAccess W1710978090 @default.
- W1710978090 hasPrimaryLocation W17109780901 @default.
- W1710978090 hasRelatedWork W1502471372 @default.
- W1710978090 hasRelatedWork W1993304236 @default.
- W1710978090 hasRelatedWork W2056523469 @default.
- W1710978090 hasRelatedWork W2063388653 @default.
- W1710978090 hasRelatedWork W2067686637 @default.
- W1710978090 hasRelatedWork W2098656264 @default.
- W1710978090 hasRelatedWork W2118665388 @default.
- W1710978090 hasRelatedWork W2123749980 @default.
- W1710978090 hasRelatedWork W2136581509 @default.
- W1710978090 hasRelatedWork W2159199488 @default.
- W1710978090 hasRelatedWork W2281020383 @default.
- W1710978090 hasRelatedWork W2735213458 @default.
- W1710978090 hasRelatedWork W2752706918 @default.
- W1710978090 hasRelatedWork W280616781 @default.
- W1710978090 hasRelatedWork W2900853108 @default.
- W1710978090 hasRelatedWork W2941528611 @default.
- W1710978090 hasRelatedWork W3022151847 @default.
- W1710978090 hasRelatedWork W3191043077 @default.
- W1710978090 hasRelatedWork W2292689825 @default.
- W1710978090 hasRelatedWork W3181638660 @default.
- W1710978090 isParatext "false" @default.
- W1710978090 isRetracted "false" @default.
- W1710978090 magId "1710978090" @default.
- W1710978090 workType "article" @default.