Matches in SemOpenAlex for { <https://semopenalex.org/work/W1711289587> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W1711289587 abstract "We construct a rigged Hilbert space for the square integrable functions on the line L^2(R) adding to the generators of the Weyl-Heisenberg algebra a new discrete operator, related to the degree of the Hermite polynomials. All together, continuous and discrete operators, constitute the generators of the projective algebra io(2. L^2(R) and the vector space of the line R are shown to be isomorphic representations of such an algebra and, as both these representations are irreducible, all operators defined on the rigged Hilbert spaces L^2(R) or R are shown to belong to the universal enveloping algebra of io(2). The procedure can be extended to orthogonal and pseudo-orthogonal spaces of arbitrary dimension by tensorialization. Circumventing all formal problems the paper proposes a kind of toy model, well defined from a mathematical point of view, of rigged Hilbert spaces where, in contrast with the Hilbert spaces, operators with different cardinality are allowed." @default.
- W1711289587 created "2016-06-24" @default.
- W1711289587 creator A5019891990 @default.
- W1711289587 date "2015-02-17" @default.
- W1711289587 modified "2023-09-27" @default.
- W1711289587 title "A constructive presentation of rigged Hilbert spaces" @default.
- W1711289587 cites W3099635718 @default.
- W1711289587 hasPublicationYear "2015" @default.
- W1711289587 type Work @default.
- W1711289587 sameAs 1711289587 @default.
- W1711289587 citedByCount "0" @default.
- W1711289587 crossrefType "posted-content" @default.
- W1711289587 hasAuthorship W1711289587A5019891990 @default.
- W1711289587 hasConcept C136119220 @default.
- W1711289587 hasConcept C188313703 @default.
- W1711289587 hasConcept C202444582 @default.
- W1711289587 hasConcept C33923547 @default.
- W1711289587 hasConcept C60064506 @default.
- W1711289587 hasConcept C62799726 @default.
- W1711289587 hasConceptScore W1711289587C136119220 @default.
- W1711289587 hasConceptScore W1711289587C188313703 @default.
- W1711289587 hasConceptScore W1711289587C202444582 @default.
- W1711289587 hasConceptScore W1711289587C33923547 @default.
- W1711289587 hasConceptScore W1711289587C60064506 @default.
- W1711289587 hasConceptScore W1711289587C62799726 @default.
- W1711289587 hasLocation W17112895871 @default.
- W1711289587 hasOpenAccess W1711289587 @default.
- W1711289587 hasPrimaryLocation W17112895871 @default.
- W1711289587 hasRelatedWork W1559139210 @default.
- W1711289587 hasRelatedWork W1595480090 @default.
- W1711289587 hasRelatedWork W1975566242 @default.
- W1711289587 hasRelatedWork W1995439483 @default.
- W1711289587 hasRelatedWork W2010654609 @default.
- W1711289587 hasRelatedWork W2019357902 @default.
- W1711289587 hasRelatedWork W2036336781 @default.
- W1711289587 hasRelatedWork W2049285415 @default.
- W1711289587 hasRelatedWork W2077684100 @default.
- W1711289587 hasRelatedWork W2079406128 @default.
- W1711289587 hasRelatedWork W2092327469 @default.
- W1711289587 hasRelatedWork W2328704061 @default.
- W1711289587 hasRelatedWork W2338788112 @default.
- W1711289587 hasRelatedWork W2346770941 @default.
- W1711289587 hasRelatedWork W2801100508 @default.
- W1711289587 hasRelatedWork W623228883 @default.
- W1711289587 hasRelatedWork W648010731 @default.
- W1711289587 hasRelatedWork W768618557 @default.
- W1711289587 hasRelatedWork W99504509 @default.
- W1711289587 hasRelatedWork W2164543158 @default.
- W1711289587 isParatext "false" @default.
- W1711289587 isRetracted "false" @default.
- W1711289587 magId "1711289587" @default.
- W1711289587 workType "article" @default.