Matches in SemOpenAlex for { <https://semopenalex.org/work/W1718679997> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W1718679997 abstract "Bayesian learning methods are the basis of many powerful analysis techniques in neuroimaging, permitting probabilistic inference on hierarchical, generative models of data. This thesis primarily develops Bayesian analysis techniques for magnetic resonance imaging (MRI), which is a noninvasive neuroimaging tool for probing function, perfusion, and structure in the human brain. The first part of this work fits nonlinear biophysical models to multimodal functional MRI data within a variational Bayes framework. Simultaneously-acquired multimodal data contains mixtures of different signals and therefore may have common noise sources, and a method for automatically modelling this correlation is developed. A Gaussian process prior is also used to allow spatial regularization while simultaneously applying informative priors on model parameters, restricting biophysically-interpretable parameters to reasonable values. The second part introduces a novel data fusion framework for multivariate data analysis which finds a joint decomposition of data across several modalities using a shared loading matrix. Each modality has its own generative model, including separate spatial maps, noise models and sparsity priors. This flexible approach can perform supervised learning by using target variables as a modality. By inferring the data decomposition and multivariate decoding simultaneously, the decoding targets indirectly influence the component shapes and help to preserve useful components. The same framework is used for unsupervised learning by placing independent component analysis (ICA) priors on the spatial maps. Linked ICA is a novel approach developed to jointly decompose multimodal data, and is applied to combined structural and diffusion images across groups of subjects. This allows some of the benefits of tensor ICA and spatially-concatenated ICA to be combined, and allows model comparison between different configurations. This joint decomposition framework is particularly flexible because of its separate generative models for each modality and could potentially improve modelling of functional MRI, magnetoencephalography, and other functional neuroimaging modalities." @default.
- W1718679997 created "2016-06-24" @default.
- W1718679997 creator A5010654777 @default.
- W1718679997 date "2009-01-01" @default.
- W1718679997 modified "2023-09-27" @default.
- W1718679997 title "Bayesian learning methods for modelling functional MRI" @default.
- W1718679997 hasPublicationYear "2009" @default.
- W1718679997 type Work @default.
- W1718679997 sameAs 1718679997 @default.
- W1718679997 citedByCount "1" @default.
- W1718679997 countsByYear W17186799972019 @default.
- W1718679997 crossrefType "dissertation" @default.
- W1718679997 hasAuthorship W1718679997A5010654777 @default.
- W1718679997 hasConcept C107673813 @default.
- W1718679997 hasConcept C119857082 @default.
- W1718679997 hasConcept C153180895 @default.
- W1718679997 hasConcept C154945302 @default.
- W1718679997 hasConcept C160234255 @default.
- W1718679997 hasConcept C167966045 @default.
- W1718679997 hasConcept C177769412 @default.
- W1718679997 hasConcept C39890363 @default.
- W1718679997 hasConcept C41008148 @default.
- W1718679997 hasConcept C51432778 @default.
- W1718679997 hasConceptScore W1718679997C107673813 @default.
- W1718679997 hasConceptScore W1718679997C119857082 @default.
- W1718679997 hasConceptScore W1718679997C153180895 @default.
- W1718679997 hasConceptScore W1718679997C154945302 @default.
- W1718679997 hasConceptScore W1718679997C160234255 @default.
- W1718679997 hasConceptScore W1718679997C167966045 @default.
- W1718679997 hasConceptScore W1718679997C177769412 @default.
- W1718679997 hasConceptScore W1718679997C39890363 @default.
- W1718679997 hasConceptScore W1718679997C41008148 @default.
- W1718679997 hasConceptScore W1718679997C51432778 @default.
- W1718679997 hasLocation W17186799971 @default.
- W1718679997 hasOpenAccess W1718679997 @default.
- W1718679997 hasPrimaryLocation W17186799971 @default.
- W1718679997 hasRelatedWork W1976994512 @default.
- W1718679997 hasRelatedWork W2030230566 @default.
- W1718679997 hasRelatedWork W2078604986 @default.
- W1718679997 hasRelatedWork W2102858961 @default.
- W1718679997 hasRelatedWork W2125756390 @default.
- W1718679997 hasRelatedWork W2131481495 @default.
- W1718679997 hasRelatedWork W2148194427 @default.
- W1718679997 hasRelatedWork W2161696200 @default.
- W1718679997 hasRelatedWork W2335473041 @default.
- W1718679997 hasRelatedWork W2542964527 @default.
- W1718679997 hasRelatedWork W2592340877 @default.
- W1718679997 hasRelatedWork W2604786431 @default.
- W1718679997 hasRelatedWork W2744209373 @default.
- W1718679997 hasRelatedWork W2803973828 @default.
- W1718679997 hasRelatedWork W2907032163 @default.
- W1718679997 hasRelatedWork W2907676754 @default.
- W1718679997 hasRelatedWork W2942053046 @default.
- W1718679997 hasRelatedWork W2964336243 @default.
- W1718679997 hasRelatedWork W3092187754 @default.
- W1718679997 hasRelatedWork W2765372687 @default.
- W1718679997 isParatext "false" @default.
- W1718679997 isRetracted "false" @default.
- W1718679997 magId "1718679997" @default.
- W1718679997 workType "dissertation" @default.